Skip to main content Skip to footer

Geothermal Heating and Cooling

What is Geothermal Heating and Cooling?​

Geothermal systems provide heating and cooling by exchanging heat with the ground through a system of fluid filled underground pipes. The ground temperature remains relatively constant throughout the year at around 55ᵒF, which allows geothermal systems to both heat and cool buildings by pulling heat from the ground for heating during the winter and removing heat from indoor spaces and storing it in the ground for cooling during the summer. Above ground, geothermal heat pumps that are connected to the underground pipes help transfer heat between the fluid in the pipes and the air. In most cases, these heat pumps are connected to conventional ductwork to distribute heated or cooled air within the building. Learn more about the types of geothermal heat pump systems.

​Benefits of Geothermal Heating and Cooling​

Since a geothermal system is moving heat around instead of creating heat, geothermal systems are much more efficient than other heating and cooling options, reaching efficiencies of 300% to 400%. In other words, for each unit of energy the system uses, it produces three to four units of heating or cooling. This is compared to traditional options (e.g., furnaces) that have maximum efficiencies of around 96%, using more energy than the amount of heating or cooling they provide. As a result, geothermal systems use much less energy than other heating and cooling options, reducing energy costs while improving comfort. 

The increased efficiency of geothermal systems results in the use of less energy to heat and cool a space, meaning that geothermal systems have some of the quickest payback periods. Additionally, most geothermal system life spans are estimated around 24+ years for the geothermal heat pump and 50+ years for the ground loop. Given that a geothermal system acts as both a heating and cooling system, and the average system life for both a furnace and an air conditioner is 15-20 years, geothermal systems last longer and save money on replacement costs over the lifetime of the system. This is in addition to the energy savings achieved from the increased efficiency of the system compared to traditional systems.  ​​

Because geothermal systems use the ground to provide heating and cooling, they use 25% to 50% less electricity than other systems, greatly reducing greenhouse gas emissions. Geothermal systems further reduce greenhouse gas emissions and create more healthy spaces because they eliminate the need for fossil gas heating, which is a major source of greenhouse gas emissions in Ann Arbor, and is known to generate air pollutants in indoor spaces that cause health issues such as asthma, allergies, and learning deficits. While geothermal systems do require a small amount of electricity to operate, as the electric grid becomes cleaner with more renewables, geothermal systems have the potential to provide heating and cooling with zero emissions. 

Geothermal heat pumps hold a consistent temperature and can maintain consistent indoor humidity levels, resulting in comfortable indoor environments. The system is also very quiet and produces no indoor air pollution. ​

Benefits of District Geothermal

​As with individual geothermal systems, district geothermal is a much more efficient heating and cooling system than other systems, meaning lower energy bills for everyone served by the system and less greenhouse gas emissions. Additionally, because this system is all electric, it helps eliminate the need for fossil gas heating systems, further reducing greenhouse gas emissions as well as reducing air pollutants in our indoor spaces that cause health issues. In addition to the general benefits of geothermal heating and cooling, district geothermal also sees the following benefits: ​

District Geothermal in Other Communities

This website uses cookies to enhance usability and provide you with a more personal experience. By using this website, you agree to our use of cookies as explained in our Privacy Policy.