BUILDING A WORLD OF DIFFERENCE

CITY OF ANN ARBOR

WATER & WASTEWATER SYSTEM CAPITAL COST RECOVERY STUDY

AGENDA

- Welcome & Project Background
- Project Team
- Project Concepts & Approach
- Next Steps
- Q&A

PROJECT TEAM

INTRODUCTION & PROJECT TEAM

Troy Baughman *Project Manager*

City of Ann Arbor

MANAGEMENT TEAM

Brian Jewett
William Zieburtz
Teresa Weed Newman –
Outreach Task Manager
(Project Innovations)

TECHNICAL SPECIALISTS

James Broz - WW
Robert Harbron – WW
David Koch - W
Mike Borchers - SME
Lori Byron (Famous in Your Field)
- SME

BLACK & VEATCH / PROJECT INNOVATIONS

- Our industry experience and expertise
 - Thought leadership on capital fee programs throughout U.S.
 - Bill Zieburtz former Chair of AWWA Rates and Charges Committee
 - Brian Jewett leading update of impact fee chapter of AWWA
 M1 Manual (national guidebook for utility rates/fees)
 - Effective public engagement strategies
- Our local knowledge and experience working with Ann Arbor
- Our approach
 - Collaborative and focused on meeting project objectives
 - Comprehensive scenario planning

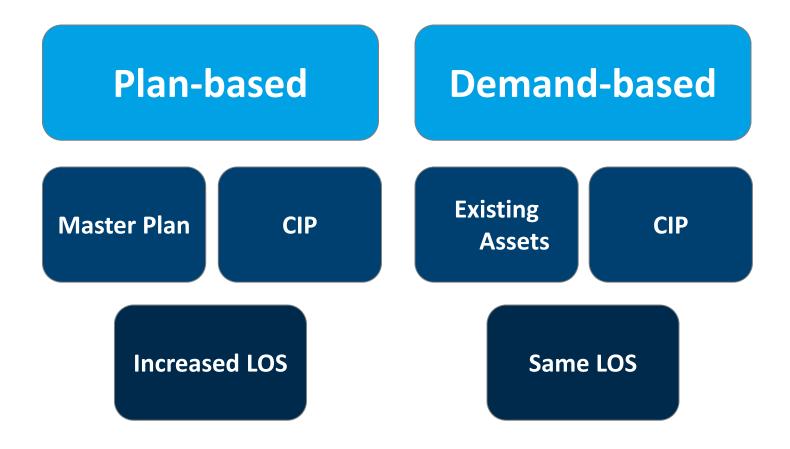
PROJECT CONCEPTS & APPROACH

ANN ARBOR CAPITAL COST RECOVERY CONSIDERATIONS



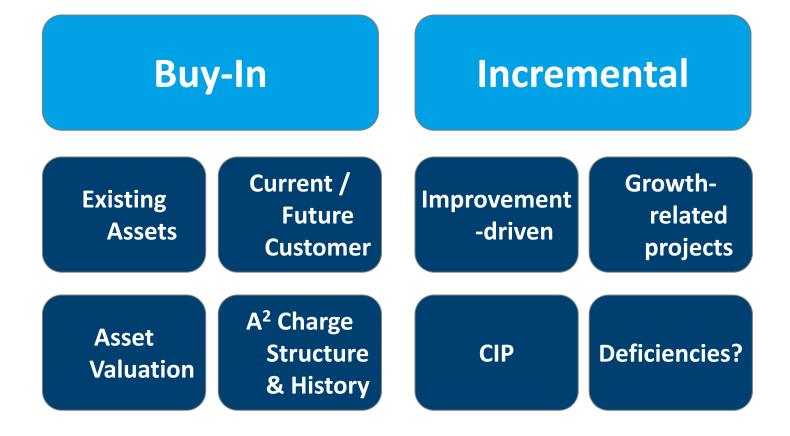
WHY UTILITY CONNECTION & IMPROVEMENT CHARGES

- Maintain existing levels of service
- New growth pays its equitable share
 - Anti-growth pressure may be eased
- Encourage disciplined capital improvement planning
 - Earmark money for capital improvements
- Promote comprehensive planning and growth management
 - Help ensure adequate public facilities
- Guarantees level playing field


DEVELOPING ANN ARBOR'S CAPITAL CHARGES

General Framework - Calculation of Capital Recovery Fees is determined as follows:

DETERMINE APPROACH



Which approach is best for Ann Arbor?

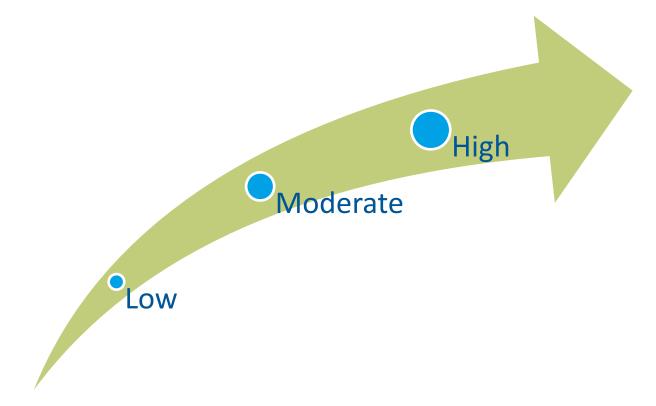
DETERMINE APPROACH

Which approach is best for Ann Arbor?

DETERMINE DEMAND

Documents

Master Plans


City Planning

SEMCOG

Census Data

USE SEVERAL GROWTH SCENARIOS

Considerations:

- Growth projection & fees Inverse relationship
- Whose growth assumptions?

Meter Size	Buy-In Component per Meter	Meter Size	Buy-In Component per Meter
3/4"	\$725	3/4"	\$2,297
1"	\$1,208	1"	\$3,829
1.5"	\$2,415	1.5"	\$7,658
2"	\$3,864	2"	\$12,253
3"	\$7,245	3"	\$22,974
4"	\$12,075	4"	\$38,290
6"	\$24,151	6"	\$76,581
8"	\$38,641	8"	\$122,529
10"	\$55,547	10"	\$176,135
12"	\$103,849	12"	\$329,297

Select Cell for Asset Valuation Approaches:

<u>Legend: 1 = OC, 2 = OCLD, 3 = RC, 4 = RCLD</u>

Select Cell for Asset Valuation Approaches:

Legend: 1 = OC, 2 = OCLD, 3 = RC, 4 = RCLD

4

IDENTIFYING FACILITY COSTS: GROWTH-RELATED CIP

Project Description		Total penditure	Growth %	Growth Total
Transmission & Distribution Transmission				
Mains	\$	1,790,000	5%	\$ 89,500
Tanks		4,407,020	85%	3,745,967
Pump Station		2,918,250	5%	145,913
Subtotal	\$	9,115,270		\$3,981,380

EVALUATE CREDITS

- Past special assessments
- Past contributions
- Dedicated revenues, e.g. grants
- Current outstanding debt & potential future debt
 - Present Value approach on debt service payments – use nominal interest rate on debt
 - Real Interest Cost approach nominal interest rate less inflation rate

DETERMINE FEE MECHANISM

- Tap size vs. Meter size
 - May result in lower charge for residential connections
- Equivalency unit (REU)
- Progressive
 - Persons per household
 - Square footage for non-residential
- Plumbing Fixture Units (as established by building code)
- Usually in current dollars

CALCULATE FEES

- Benchmarking
- Cash flow analysis
- Phase-in charges / Payment installment plans
- Accounting of charges
- Annual reporting
- Indexing

NEXT STEPS

PROJECT TIMELINE

September

- Data review and analysis
- Initial Stakeholder meetings

October - November

Capital charge methodology development

December - January

- Stakeholder meetings to discuss findings/recommendations
- City Council workshop

February - April

- Finalize recommendation & report
- Seek City Council approval

Q&A