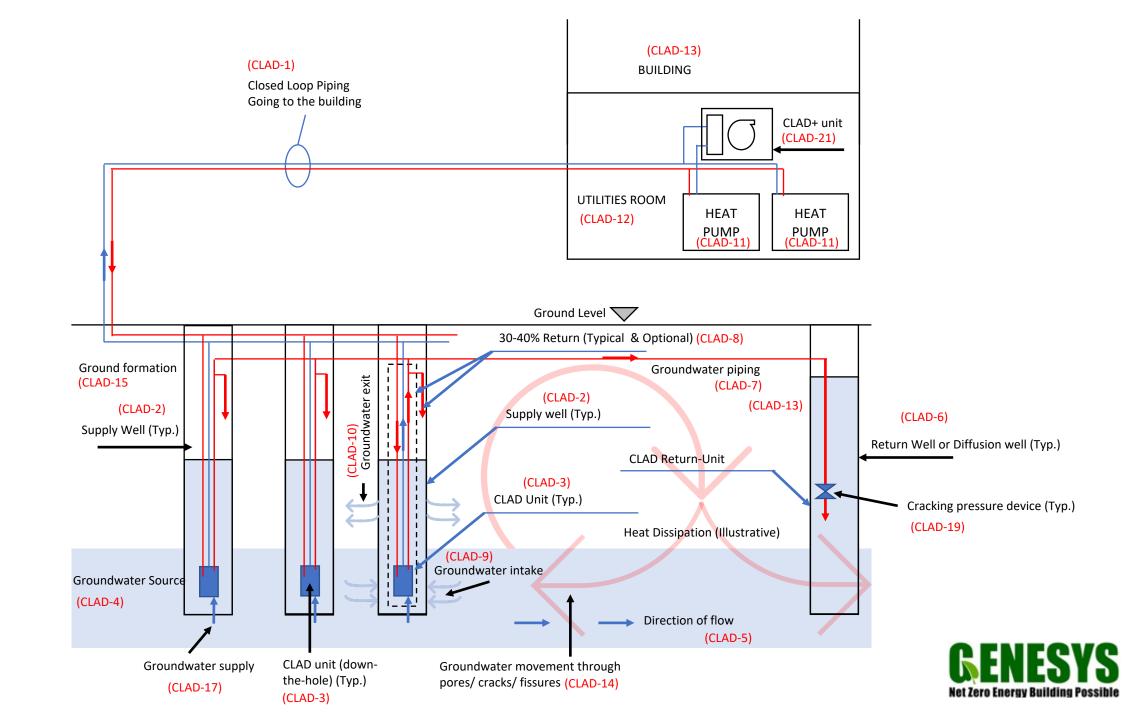


CLOSED LOOP ADVECTION DEVICE CLAD Geothermal


50% less expensive | 90% smaller land | 50% more efficient

Roshan Revankar (roshan@genesysnze.com)

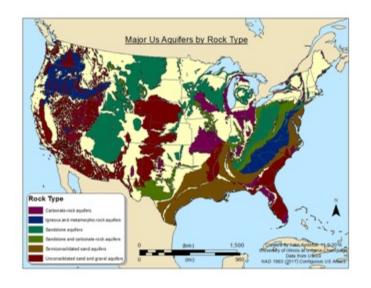
CLAD Concept

Product Mix

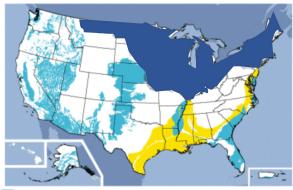
Patent pending

- CLAD down-the-hole
- CLAD sub-surface
- CLAD Lake
- CLADER (installer)
- PAU (pitless adapter unit) Ultra High Efficiency
- BBE (software business benefit estimator
- CLAD Sizer (design) software)
- CLAD Cloud (IoT)

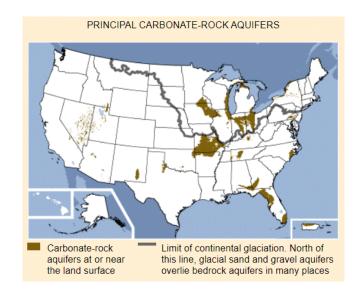
Standard Efficiency


Model	Ton	EWT (°F)	
		Cooling	Heating
CLAD-6	6	80	43
CLAD-20	20	80	43
CLAD-100	100	80	43

High Efficiency


Model	Ton	EWT (°F)	
		Cooling	Heating
CLAD-6 HE	6	70	45
CLAD-20 HE	20	70	45
CLAD-100 HE	100	70	45

Model	Ton	EWT (°F)	
		Cooling	Heating
CLAD-6 UHE	6	60	47
CLAD-20 UHE	20	60	47
CLAD-100 UHE	100	60	47


US Aquifers

PRINCIPAL UNCONSOLIDATED AND SEMICONSOLIDATED SAND AND GRAVEL AQUIFERS

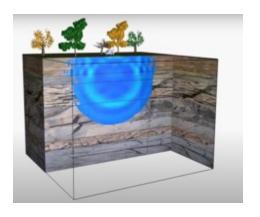
- Unconsolidated sand and gravel aquifers at or near the land surface.
- Semiconsolidated sand and gravel aquifers.
- Sand and gravel aquifers of alluvial and glacial origin are north of the line of continental glaciation.

PRINCIPAL SANDSTONE AND CARBONATE-ROCK AQUIFERS

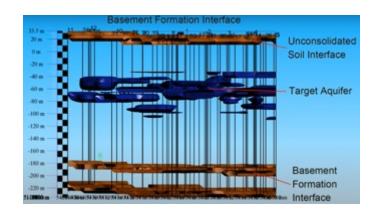
- Sandstone and carbonate-rock aquifers at or near the land surface
- Limit of continental glaciation. North of this line, glacial sand and gravel aquifers overlie bedrock aquifers in many places

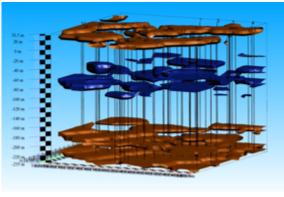
PRINCIPAL SANDSTONE AQUIFERS

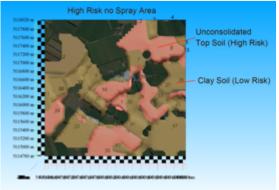
- Sandstone aquifers at or near the land surface.
- Limit of continental glaciation. North of this line, glacial sand and gravel aquifers overlie bedrock aquifers in many places.

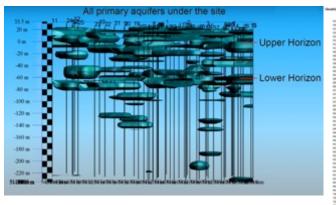

PRINCIPAL IGNEOUS AND METAMORPHIC-ROCK AQUIFERS

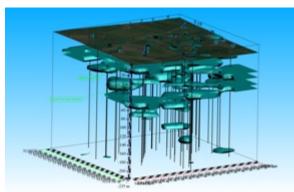
- Igneous and metamorphic-rock aquifers at or near the land surface.
- Limit of continental glaciation. North of this line, glacial sand and gravel aquifers overlie bedrock aquifers in many places.

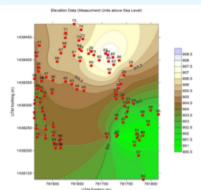


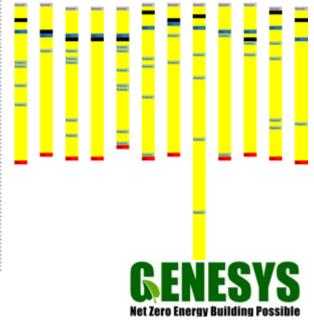

Site Survey Tools











Design & Sales Tools

- CLAD Sizer
 - Inputs
 - Hydraulic conductivity
 - Hydraulic gradient
 - Radius of influence
 - Output
 - Capacity per production well
 - Capacity per diffusion well
 - Pump selection parameters flow/ total head

- Cost estimator & proposal builder
 - Database
 - Component cost tables
 - Inputs
 - Number of wells
 - Editable pipe lengths
 - Output
 - Bill of quantities (BOQ)
 - Standard editable proposal

Design & Sales Tools

- BBE Business Benefits Estimator System
 - Hourly iterative performance builder
 - Equipment options
 - Scroll, screw, and centrifugal chillers air-cooled & water-cooled (cooling only)
 - Split systems air-cooled & watercooled (cooling only)
 - Heat pumps air source, water source, and dual source
 - Furnace
 - System option
 - Geothermal closed loop, open loop, standing column, CLAD, Lake loop
 - Hybrid (geothermal and cooling towers)

- Input options
 - ASHRAE cities/ weather data/ geographical data (pre-loaded database)
 - Preloaded load profiles (bell curve/ constant/ cooling only/ heating only/ manual entry)
 - Utility rates
- Output
 - Hourly analysis
 - Savings summary & payback
 - Triple bottom line analysis (commercial, environmental & social impact)

Summary

- Building loop is a closed loop
- Use of glycol possible
- 10 times more efficient than closed loop 90% less ground area
- Assures scalability
- No thermal build-up
- No abandoning of wells due to underground leakages
- Product readiness
- Component reliability HXs are field tested in critical applications
- Standardized design and sizing tools

FAQ's

- 1. How much water do you need for a 6 ton unit?
 - 7.2 GPM (~1.2gpm/ton)
- 2. What size diameter well and how deep?
 - 5", 6" and 12" casing for 6, 20 and 100 tons...Typically 50 –70 ft .
- 3. How many supply wells per diffusion well?
 - 2-3 depending on ground conditions. Can also discharge into surface water, storm drain etc.
- 4. Any water quality issues? How is it handled?
 - Material, surface finish, no O2 exposure, turbulent flow in HX

FAQ's

- 5. What about pressure drops and pump energy?
 - High turbulence BUT only in a short length. Cracking pressure device.
- 6. Is the well pump always turned on? How is it controlled?
 - No. Temp controlled and variable speed. Passive heat transfer possible.
- 7. Issues with permit? What has been your experience?
 - Show all your cards!!
- 8. Can I order a few today?
 - Absolutely!

