

GEOTECHNICAL EVALUATION REPORT

350 SOUTH FIFTH AVENUE REDEVELOPMENT ANN ARBOR, MICHIGAN

SME Project 084868.01 November 3, 2023

The Kramer Building 43980 Plymouth Oaks Blvd. Plymouth, MI 48170-2584

T (734) 454-9900

www.sme-usa.com

November 3, 2023

Ms. Jennifer Hall Executive Director Ann Arbor Housing Commission Development Corporation 727 Miller Avenue Ann Arbor, Michigan, 48103

Via Email: jhall@a2gov.org Darren McKinnon – dmckinnon@dmc-res.com Justin Fiema – justin.fiema@smithgroup.com

RE: Geotechnical Evaluation Report 350 South Fifth Avenue Redevelopment Ann Arbor, Michigan SME Project No. 084868.01

Dear Jennifer:

We have completed our geotechnical evaluation for the proposed redevelopment of the 350 South Fifth Avenue property in Ann Arbor, Michigan. This report presents the results of our observations and analyses, along with our geotechnical recommendations and general construction considerations based on the information disclosed by the borings.

We appreciate the opportunity to be of service. If you have questions or require additional information, please contact me.

Very truly yours,

SME

1. hothi

Alex Kuisell, PE Senior Project Engineer

Enclosure: SME Geotechnical Evaluation Report; Dated November 3, 2023

TABLE OF CONTENTS

1. INTRODUCTION	1
1.1 SITE CONDITIONS AND PROJECT BACKGROUND	1
1.2 PROJECT DESCRIPTION	1
1.2.1 PRIMARY CONCEPT	1
1.2.2 ALTERNATE CONCEPT	3
2. EVALUATION PROCEDURES	3
2.1 FIELD EXPLORATION	3
2.2 LABORATORY TESTING	3
3. SUBSURFACE CONDITIONS	4
3.1 SOIL CONDITIONS	4
3.2 GROUNDWATER CONDITIONS	5
4. ANALYSIS AND RECOMMENDATIONS – PRIMARY CONCEPT	5
4.1 SITE PREPARATION AND EARTHWORK	5
4.1.1 EXISTING FILL CONSIDERATIONS	5
4.1.2 GENERAL SITE SUBGRADE PREPARATION	6
4.1.3 SUBGRADE PREPARATION FOR FLOOR SLABS	8
4.1.4 ENGINEERED FILL REQUIREMENTS	9
4.2 FOUNDATIONS1	0
4.2.1 SHALLOW FOUNDATIONS 1	1
4.2.2 AUGER CAST-IN-PLACE PILES 1	4
4.3 SEISMIC SITE CLASS1	7
4.4 BELOW-GRADE WALLS AND DRAINAGE1	7
4.5 EARTH RETENTION AND UNDERPINNING1	9
4.6 STABILITY OF SLOPES2	0
4.7 SOIL CORROSIVITY2	0
4.8 INFILTRATION AND STORMWATER CONSIDERATIONS2	2
4.9 CONSTRUCTION CONSIDERATIONS2	4
5. DESIGN DEVELOPMENT CONSIDERATIONS – ALTERNATE CONCEPT 2	4
5.1 SLAB AND FOUNDATION SUPPORT OPTIONS	4
5.2 GROUND IMPROVEMENT OPTIONS2	5
5.3 SEISMIC SITE CLASS	6
6. PAVEMENT DESIGN RECOMMENDATIONS	6
6.1 PAVEMENT DESIGN CRITERIA2	7
6.2 SUBGRADE PREPARATION2	8
6.3 RECOMMENDED RIGID PAVEMENT SECTION2	9
6.3.1 RECOMMENDED RIGID PAVEMENT SECTION	9
6.3.2 GENERAL PAVEMENT CONSTRUCTION COMMENTS	0
6.4 DRAINAGE	0
6.5 PAVEMENT CONSTRUCTION NOTES3	1

APPENDIX A

FIGURE 1: BORING LOCATION DIAGRAM BORING LOG TERMINOLOGY CURRENT BORING LOGS (B1 – B11 AND IT1) PREVIOUS BORING LOGS – SME PROJECT NO. 073815.00 (B101 – B102) PREVIOUS BORING LOGS – SME PROJECT NO. 051735.00 (B1 – B8) FIGURE 2: DOUBLE RING INFILTROMETER TEST RESULTS (IT1) PRESSUREMETER TEST RESULTS (8 PLOTS)

APPENDIX B

IMPORTANT INFORMATION ABOUT THIS GEOTECHNICAL-ENGINEERING REPORT GENERAL COMMENTS

1. INTRODUCTION

This report presents the results of our geotechnical evaluation for the subject project. Per the request of DMC Real Estate Services and SmithGroup, we have incorporated additional recommendations for the alternate building concept that was considered by the project team after we transmitted our initial (draft) report dated February 6, 2023. We prepared this report based on your authorization of SME Proposal P04165.22 dated December 29, 2022.

1.1 SITE CONDITIONS AND PROJECT BACKGROUND

The site is located at 350 South Fifth Avenue, on the north side of East William Street, and between Fourth Avenue and Fifth Avenue in Ann Arbor, Michigan. The project site consists of a surface (paved) parking lot. The existing ground surface gradually slopes downward from east to west. Based on aerial imagery from Google Earth, existing ground surface elevations range from about elevations 850 to 855 feet.

Previous development on this site consisted of a multi-story YMCA residential building. The previous building had a basement level, and a pool near the west end of the building (refer to the Boring Location Diagram – Figure 1, attached to this report). During the demolition of the building, we understand the existing basement (or at least a portion of the basement/pool) was left in place.

SME has previously completed geotechnical evaluations within and/or near this site for previously considered site redevelopments. The boring logs from those evaluations (SME projects 051735.00 and 073815.00) are included in Appendix A for reference. Approximate locations of the previous borings are depicted on the Boring Location Diagram (Figure 1) included in Appendix A.

1.2 PROJECT DESCRIPTION

Two options are being considered for the project, herein referred to as the "primary" and "alternate" concepts.

1.2.1 PRIMARY CONCEPT

The proposed development consists of a new residential tower and circulation for transit vehicles. The tower is anticipated to be a minimum of 19 stories tall, plus a small penthouse, and will have a one-story basement level. The tower will be located along the southern portion of the site along Williams Street. The bus lanes for the transit center will be on the northern portion of the site. We understand this is the primary option for development being considered by the project team. See Image 1 below.

IMAGE NO. 1: Site Concept Provided by SmithGroup (Sheet SB-1 Dated November 9, 2021)

The project is in the early stages of design and a foundation plan is not available. However, the project structural engineer (SmithGroup) provided SME with preliminary information for preparing this report. Both concrete and structural steel framing systems are being considered for the design of the super-structure, which will impact the maximum column loads. The basement will be constructed of cast-in-place reinforced concrete and used for mechanical and electrical equipment, substation equipment, and storage. Refer to the image below.

IMAGE NO. 2: Basement Floor Plan Provided by SmithGroup via email on February 19, 2023.

Column bays will be approximately 30 ft x 30 ft. Column loads are expected to range from 450 to 3,000 kips. However, we understand the distribution of loads will be relatively uniform across the building's footprint.

The finished first floor elevation has tentatively been set at approximately 848 feet on the west portion of the building and 851 feet on the eastern portion. The basement finished floor elevation has tentatively been set at 833 feet, with elevator pits extending approximately 5 to 7 feet lower. We estimate the basement excavation will extend about 20 feet below the existing ground surface (bgs). We understand a partial (shallower) basement level will be located near the northwest corner of the building, although the depth (from existing grade) is unknown at this time. Based on similar projects, we estimate exterior wall loads on basement wall foundations may vary from 1 kip per linear foot (klf) to 10 klf.

Canopy foundations will be located outside of the main building footprint (to the north) near the bus lanes. We assume column loads of 300 kips or less for the canopy.

1.2.2 ALTERNATE CONCEPT

SmithGroup contacted SME in July 2023 for assistance with evaluating the feasibility of a smaller building concept (as an alternate option). This concept consists of a 7-story, slab-on-grade, residential structure with the building footprint extending slightly further north than the primary concept. We were not provided with additional information for this concept. Based on similar projects we anticipate maximum column loads of 700 kips and wall loads up to 5 klf.

At this time, we are providing design development considerations for this concept to help the project team consider associated cost, feasibility, and schedule implications. Refer to Section 5 of this report. If requested, we can provide more detailed recommendations for this concept if it is selected later as the new primary option.

2. EVALUATION PROCEDURES

2.1 FIELD EXPLORATION

SME mobilized a truck-mounted drill rig to the site and completed fourteen soil borings (B1A, B1B, B2, B3A, B3B, B4 – B11, and IT1) between January 4, 2023 and January 12, 2023. Note proposed borings B1 and B3 were drilled twice due to encountering unknown obstructions at 16 feet and 8 feet bgs at borings B1A and B3A, respectively. The borings were advanced using hollow-stem augers and extended about 8 feet to 90 feet bgs. The boring locations are shown approximately on Figure 1 included in Appendix A. Recovered Standard Penetration Test (SPT) split-barrel samples were sealed in glass jars. Groundwater level measurements (or lack thereof) were recorded during and immediately after completion of each boring. Then, the borings were backfilled with excess auger cuttings and capped with asphalt cold patch. Therefore, long-term groundwater information is not available from the borings. Soil samples recovered from the field exploration were returned to the SME laboratory for further observation and testing.

We also completed in-situ pressuremeter testing at the site between January 5, 2023 and January 7, 2023. We performed the pressuremeter testing in the natural sands during the drilling of borings B6, B7, and B9. The tests were performed to obtain limit pressures and soil moduli of the tested soils, to more accurately evaluate the soil bearing capacity that can be achieved for shallow foundations and estimate the associated settlement due to imposed building loads. Pressuremeter testing was performed at various depths between about 20 to 35 feet bgs, within the anticipated primary stress influence zone for the building's foundation support system. Refer to Section 4.2.1 for more information.

2.2 LABORATORY TESTING

The laboratory testing program consisted of visual soil classification on recovered samples along with moisture content and hand penetrometer shear tests on portions of cohesive samples obtained. The Laboratory Testing Procedures in Appendix B provide general descriptions of the laboratory tests mentioned above.

Upon completion of the laboratory testing, we prepared boring logs including materials encountered, penetration resistances, pertinent field observations made during the drilling operations, and the results of certain laboratory tests. The current boring logs are included in Appendix A. We developed the soil descriptions included on the boring logs from both visual classification and the results of laboratory tests, where applicable.

Soil samples, retained over a long time, even sealed in jars, are subject to moisture loss and are no longer representative of the conditions initially encountered in the field. Therefore, we normally retain soil samples in our laboratory for 60 days and then dispose of them, unless instructed otherwise.

3. SUBSURFACE CONDITIONS

3.1 SOIL CONDITIONS

The soil conditions encountered at the borings consist of surficial pavement overlying existing fill, which is underlain by natural sands to the explored depths. We provide a summary of the materials encountered at the boring locations, beginning at the existing ground surface and proceeding downward, below.

Stratum 1: Surficial Pavement. The existing pavement at the site appears to consist of a cemented gravel, possibly used as a permeable pavement for stormwater management. The pavement thickness varied from about 3 to 10 inches at the borings.

Stratum 2: Existing Fill. We encountered existing, undocumented fill below the surficial pavement, similar to previous borings performed by SME at the site. The fill extended to the refusal depths at borings B1A and B3A (8 to 16 feet) and about 9 to 17 feet bgs at the other borings. The fill extended about 16 to 22 feet bgs at previous borings B101 and B102.

The upper zone of the fill (about 3 feet) appeared to consist of a mixture of sand/gravel soil and concrete debris. Below this zone, we encountered varying amounts of debris (e.g. brick, concrete, metal, and glass fragments) mixed in with the sand fill. The debris appears to consist of construction materials, possibly remnants of the demolished YMCA building structure. We also drilled through zones of concrete debris (about 1 to 1.5 feet thick) within the fill at borings B5, B10, and B11, and encountered obstructions (resulting in drill rig auger refusal) during drilling at borings B1A and B3A. We understand the pool slab within the former YMCA building may have been left in place, as shown approximately on Figure 1 in Appendix A.

Standard Penetration Test (SPT) resistances (N_{60} -values) ranged from 8 to greater than 100 blows per foot (bpf) in the fill. Some of the blow counts appear elevated due to the presence of debris within the fill. The sand fill appears to be in a loose to dense condition.

Stratum 3: Natural Sands. Natural sands, ranging in grain size and varying in silt, clay, and gravel content, were encountered beneath the fill, and extended to the explored depths of the borings. N_{60} values ranging from 19 to 104 blows per foot (bpf) indicate the sands are in a medium dense to extremely dense condition.

We encountered cobble zones within the natural sands at the current and previous borings at this site, as noted by the driller during drilling. The frequency and depths of the cobble zones vary, but were generally encountered between 20 and 75 feet bgs.

The soil profile described above and included on the appended boring logs are generalized descriptions of the conditions encountered. We intend the stratification depths described above and shown on the boring logs to indicate a zone of transition from one soil type to another. They do not show exact depths of change from one soil type to another. We base the soil descriptions on visual classification of the soils encountered. Soil conditions may vary between or away from the boring locations. Please refer to the boring logs for the soil conditions at the specific boring locations.

Consider thickness measurements of the surficial materials reported on the boring logs (e.g. pavement) approximate as mixing of these materials can occur in small diameter boreholes. If accurate thickness measurements are required for inclusion in bid documents or for purposes of design, we recommend performing additional evaluations such as pavement cores.

It is sometimes difficult to distinguish between fill and natural soils based on samples and cuttings from small-diameter boreholes, especially when portions of the fill do not contain man-made materials, debris, topsoil or organic layers, and when the fill appears similar in composition to the local natural soils. Therefore, consider the delineation of fill described above and on the appended boring logs approximate only. Review former site topography plans, aerial photographs, demolition plans, environmental reports, and other historic site records and/or excavate test pits if a more comprehensive evaluation of the extent and composition of suspect fill is required.

3.2 GROUNDWATER CONDITIONS

We encountered groundwater during drilling at about 42 to 48 feet bgs, which is generally consistent with previous SME borings drilled on the site and longer-term groundwater levels encountered in the site vicinity. The depths where groundwater was encountered correspond to about elevations 799.5 to 805.5 feet. The depths where groundwater was measured shortly after drilling correspond to about elevations 801.5 to 807.5 feet. Based on our previous experience, the long-term groundwater elevations tend to vary from roughly elevations 800 to 810 feet in the southern end of the downtown Ann Arbor area.

In addition, some groundwater may be encountered at higher levels when it is entrapped (or perched) above seams/layers of less permeable soils (e.g. silts and clays) or existing fill. In general, we expect such perched groundwater (if any) would occur in isolated areas of the site. Typically, the perched groundwater originates in area(s) where surface runoff accumulates (e.g. near downspout outlets, below-grade utilities, utility corridors, low-lying areas relative to the surrounding ground surface, etc.) and cannot easily drain into the underlying well-draining granular soils. Perched water volumes could also be present around the buried debris within the existing fill (e.g. former YMCA pool slab possible left in-place). Seepages from perched groundwater source(s) (if any) that may be encountered in excavations can be relatively significant once initially encountered but tend to dissipate over time as the source(s) drain into the excavation.

We expect hydrostatic groundwater levels and the potential rate of infiltration into excavations to fluctuate throughout the year, based on variations in precipitation, evaporation, surface run-off, and other factors. The groundwater levels (or lack thereof) indicated by the borings and presented in this section represent conditions at the time the readings were taken. The actual groundwater levels at the time of construction may vary. If more information regarding groundwater levels at this site is required, then we recommend additional subsurface assessment(s).

4. ANALYSIS AND RECOMMENDATIONS – PRIMARY CONCEPT

4.1 SITE PREPARATION AND EARTHWORK

4.1.1 EXISTING FILL CONSIDERATIONS

We have encountered a relatively deep profile of existing fill at this site, extending up to 22 feet bgs. Based on the borings and site history, we expect the existing fill soils (and debris within the existing fill profile) are widespread on the site. The deepest portions of the fill appear to be located within the footprint of the former YMCA building – refer to the appended Figure 1. Presumably, the deeper fills are a result of backfill placed to fill the basement of the former YMCA building. It is difficult to discern the relative density of the existing sand fill due to the presence of debris elevating some of the SPT blow counts. However, portions of the fill at the current borings, and at previous borings performed around the perimeter of the site (refer to previous boring logs from SME Project 051735.00), appear to be poorly compacted based on the SPT blow counts. Overall, since the origin of the existing fill is not known and we are not aware of records that document the fill placement and any compaction operations during placement, and because of the variable density of the fill, we consider the fill to be undocumented or uncontrolled.

Based on our current understanding of the project, we anticipate a mass excavation extending about 20 feet bgs will be required for below-grade construction. Therefore, we expect most of the existing fill will be removed within the proposed building footprint, which covers the southern half (approximately) of the project site. The remainder of the site (to the north) will consist of at-grade pavements for the service and bus lanes. Based on the borings, about 8 to 22 feet of existing fill is located within the proposed pavement areas – refer to current borings B1A – B6, B11, and IT1 and previous borings B101, B102, B4, and B8.

We anticipate a mass removal of the existing fill in the proposed pavement areas would be impractical due to associated costs, schedule concerns, and proximity to neighboring properties/right-of-way areas. Therefore, after removal of the existing pavements, utilities and other structures, we recommend a thorough field evaluation of the remaining existing fill. We anticipate the existing fill will require partial removal (and replacement with engineered fill) in some areas and/or improvement (where practical) to achieve a suitable subgrade for grade slab and pavement construction. A suitable subgrade is required for support of new slabs and pavements, particularly where the pavements will be subjected to traffic loading (e.g., emergency fire lane, bus lanes, etc.). Even if the existing fill is improved, construction of new slabs/pavements over the fill requires the Owner's acceptance of an elevated risk of poor slab/pavement performance, due to the variable nature of the fill.

The recommendations presented above consider management of the existing fill to achieve an adequate subgrade for support of grade slabs and pavements. The project team may also need to consider the environmental implications of leaving the existing fill in place or transporting it offsite. Refer to the project environmental report(s) for additional information regarding special handling/disposal requirements for the onsite soils and groundwater.

Regarding new foundations, we recommend the foundations extend through the existing fill soils and bear directly on/within suitable natural soils. For additional information regarding foundation construction, refer to Section 4.2 of this report.

Any existing fill to remain below new slabs, pavements, sidewalks, etc. will need to be verified by SME as adequate for structural support. We recommend these further evaluation(s) occur on a case-by-case basis to address the specific needs of each situation where existing fill is to remain in-place below any proposed improvements. Based on the available borings, most of the existing fill is considered adequate for pavement support. However, portions of the existing fill are in an overly loose condition and therefore, there is a heightened risk for poor performance of structures supported on the fill. Proper subgrade preparation can reduce (but not eliminate) this risk. If even a low risk for poor performance is not acceptable then the existing fill would need to be completely removed and replaced with engineered fill. SME can provide additional recommendations if a complete removal/replacement of the existing fill is desirable. Due to the significant depths of existing fill, we anticipate a complete removal would require the use of an earth retention system (ERS) installed along the site perimeter.

Proper subgrade preparation includes removing unsuitable fill, uniformly compacting the existing fill with relatively large compaction equipment, performing proofroll tests, undercutting overly soft/loose (and/or debris/organic-laden) subgrade, and replacing undercuts with suitable engineered fill. To address budgetary concerns, we recommend including a budget contingency for additional earthwork (e.g., undercutting, in-place compaction, removal of unsuitable fill, importing suitable fill, etc.) that may be required to improve subsurface conditions where existing fill is left in-place.

4.1.2 GENERAL SITE SUBGRADE PREPARATION

We anticipate earthwork operations will consist of removing the existing pavements, utilities and other structures, followed by installation of an Earth Retention System (ERS) to facilitate construction of the building's foundations and basement level. Refer to Section 4.5 for recommendations regarding the earth retention system. We anticipate some minor grading for the sidewalk/pavement areas north of the main

building structure. We recommend site clearing extend a minimum 5 feet beyond the limits of the proposed improvement areas, or to the edge of existing structures to remain, to ensure uniform support of proposed improvements. Take care during earthwork to protect adjoining/neighboring utilities and building structures to remain.

If neighboring structures/tenants will be sensitive to noises or vibrations generated by subgrade compaction or other construction activities, then we recommend setting up a monitoring program to record noise and vibrations generated during (and prior to) these operations. It would also be beneficial to perform a pre-condition assessment of sensitive, neighboring structures to document their existing condition prior to demolition/construction.

Any remaining existing utilities within the proposed building footprint (that will remain active) must be rerouted around the new construction. We recommend all abandoned utilities be removed and backfilled (if required) with granular engineered fill to the design subgrade level. Abandoned utilities outside of the building footprint could be left in place and fully grouted, provided the existing utility backfill is suitable for pavement support. Some additional subgrade preparation and testing may be required to improve the condition of the existing backfill, depending on the condition of the existing utility backfill. Further assessment regarding the suitability of the in-place backfill for pavement support can be made during site earthwork operations.

The existing subgrade (particularly, the existing fill) is sensitive to disturbances during construction and the overall success of the subgrade preparation during mass earthwork operations will directly affect the suitability of slab/pavement bearing soils. As such, take care during site earthwork operations to prepare the subgrade for structural support. Even in the natural sands, due to the limited fines content in some of these soils, the subgrade can be easily displaced under high-stress, point-type, construction loads such as those from narrow tires on a dump truck, despite its relatively dense condition. Also, the subgrade may be especially sensitive during/after receiving precipitation. Disturbed subgrade loses strength as a result. To limit subgrade disturbance, the subgrade can be capped with a dense-graded aggregate material and possibly with a geotextile separator fabric. Also, diverting surface runoff away from the construction areas, and not allowing surface water to accumulate onsite, would be helpful for limiting subgrade disturbance and required improvements.

Disturbed areas of subgrade will need to be improved in-place or be removed and replaced with engineered fill. The amount and type of subgrade stabilization will depend on the soil conditions encountered, construction traffic, and associated weather conditions. Subgrade stabilization techniques could also include removal and replacement of very loose/disturbed areas with a crushed material; or placing a woven geotextile (e.g., Mirafi 600X, or approved equal) on the subgrade followed by placement of crushed aggregate on the geotextile. The specific technique(s) to be implemented will depend on the specific site conditions encountered during construction. We recommend an SME representative review the subsurface conditions in the field and provide recommendations for the thickness and type(s) of crushed materials, if required.

After the earth retention system is installed, excavation can continue to design bottom of excavation levels. We recommend the exposed subgrade (within the building footprint and other structural areas, e.g. pavements) then be uniformly compacted using large construction equipment. Take care during compaction not to damage nearby existing structures and underground utilities. As predominantly sandy soil conditions are expected, we recommend using large, smooth-drum vibratory rollers for the compaction operations. A vibratory hoe-pac mounted onto a large excavator can also be used for compactive efforts where the use of a large roller is not practical. We recommend at least several passes be made with the compaction equipment. In some areas, moisture conditioning and/or undercutting may be necessary to enhance the effectiveness of the compaction operations.

Once the subgrade is compacted, we recommend testing the subgrade for stability. Typically, such testing involves a proofroll with a large piece of construction equipment. Where areas are accessible for proofrolling, we recommend using a fully loaded tandem axle truck (50,000 lbs. minimum) to perform the proofroll test. Since the building pad subgrade will be in a relatively confined excavation, the use of hand-

operated tests (e.g., in-place density tests, dynamic cone penetrometer tests, hand augers, etc.) will likely be required to test the subgrade. Regardless of the approach, we recommend an SME representative be on-site to observe and test the exposed subgrade. Based on the results of the field tests and observations (and lab tests, as applicable), the SME representative can provide recommendations in the field regarding the suitability of the subgrade for structural support. Areas of unsuitably loose/wet subgrade will need to be either improved in-place (e.g., dried and recompacted) or be removed and replaced with engineered fill.

After making cuts to design grades and after the exposed subgrade is evaluated (as mentioned above) and improved as necessary, engineered fill may be placed on the exposed subgrade to establish final subgrade levels. Refer to Section 4.1.4 of this report for materials and compaction requirements for engineered fill.

4.1.3 SUBGRADE PREPARATION FOR FLOOR SLABS

We understand the basement slab will be subjected to loads from mechanical and electrical equipment, substation equipment, and residential storage items. We anticipate maximum point loads of 1 kip acting on the slab.

We anticipate the final subgrade for the basement level slab-on-grade will consist of suitable natural soils, or engineered fill placed over properly prepared natural soils. Any existing fill remaining after performing the mass excavation for the basement level will need to be reevaluated in the field and improved (or removed and replaced with engineered fill) as necessary. Assuming the subgrade is properly prepared according to the recommendations presented in this report, we recommend a vertical modulus of subgrade (k) of 200 pounds per cubic-inch (pci) for slab design. We base the recommended subgrade modulus value on our experience and empirical relationships between soil type and plate load tests performed with a 30-inch-diameter bearing plate. The subgrade modulus is the ratio of load in psi to a 0.05-inch vertical deflection.

The slab subgrade will need to be fine-graded, compacted, and level prior to placement of the aggregate leveling course. Prior to concrete placement, the subgrade will again need to be observed and tested for suitability of floor slab support. The purpose of the re-evaluation is to identify any areas of subgrade disturbed during construction activities and verify subgrade conditions are suitable for floor slab support. The re-evaluation of the subgrade will need to consist of a thorough proofroll unless the area is not accessible with proofrolling equipment. Otherwise, the evaluation of the exposed subgrade will need to consist of density testing or the use of appropriate hand-operated equipment such as hand augers and dynamic cone penetrometers. Unsuitable subgrade indicated by SME must be recompacted or removed and replaced with engineered fill.

We recommend the top 6 inches of the slab subgrade consist of an approved granular material. The purpose of this is to provide a leveling surface for construction of the slab and a moisture capillary break between the slab and the underlying soils. We recommend MDOT Class II granular material for this purpose. Note that the onsite natural soils may comply with MDOT Class II gradation criteria, and could be considered adequate for reuse as the leveling course below the basement slab. Alternatively, an approved aggregate (such as MDOT 21AA dense-graded aggregate) may be considered in lieu of the sand. The advantage of using an aggregate is it provides better protection of the subgrade than sand and a more stable working platform for construction of the slab. The granular material must also be compacted per the "Engineered Fill Requirements" section of this report (refer to Section 4.1.4). We do not recommend relying on the leveling course to protect the underlying subgrade from disturbances. Therefore, place the concrete slab soon after the leveling course, and ensure proper placement and compaction of the underlying subgrade.

Provide a vapor retarder below the floor slab if the slab is to receive an impermeable floor finish/seal or a floor covering which would act as a vapor retarder. Even if these floor coverings are not planned, the vapor retarder can reduce the transmission of moisture vapor from the ground into the structure due to thermal and humidity variations, and other conditions. However, the placement of a vapor retarder affects construction of the floor slab, concrete curing, and the rate of moisture loss as the concrete dries. The flatwork contractor must use the appropriate equipment, materials, and methods to prevent undesirable slab curling/warping.

We recommend floor slabs be separated by isolation joints from structural walls and columns bearing on their own foundations to permit relative movement. Provide a minimum of 6 inches of engineered fill between the bottom of the slab and the top of the spread foundations or pile cap below. Otherwise, we recommend the structural engineer account for potential relative settlements using grade beams, thickened slabs with appropriate reinforcing steel, or other appropriate details.

Protect the slab-on-grade subgrade soils from frost action during winter construction. Any frozen soils must be thawed and compacted or removed and replaced prior to slab-on-grade construction.

Concrete mixes are regularly changing to optimize performance and economy. We recommend using only concrete contractor(s) with substantial experience in concrete mixing, placement and curing methods (e.g., to prevent undesirable slab curling, shrinkage, segregation, bleeding, etc.). The contractor may need to retain a concrete mix designer to develop the appropriate mix(es) for the project. We recommend using only specific type(s) of well-established concrete mixes that have been 'tried and tested' to deliver successful long-term performance for each specific type of concrete application.

4.1.4 ENGINEERED FILL REQUIREMENTS

Any fill placed within the construction area, including utility trench backfill, must be an approved material, free of frozen soil, organics, or other unsuitable materials. If the proposed fill contains more than 4 percent organics, do not use such materials for engineered fill. We recommend the fill be spread in level layers not exceeding 9 inches in loose thickness and be compacted to a minimum 95 percent of the maximum dry density as determined in accordance with the Modified Proctor Test. A higher compaction criterion of a minimum 97 percent of the soil's maximum dry density based on the Modified Proctor test is required for select backfill (e.g., crushed aggregate) below shallow foundations utilizing a relatively high soil bearing pressure (refer to Section 4.2.1 of this report).

Thicker lifts of backfill may be acceptable, provided the compaction equipment can achieve the minimum compaction criterion throughout the entire thickness of the lift within the area of placement and with the type of backfill used. SME can provide recommendations in the field for adjusting lift thicknesses based on the specific type of compaction equipment/methods used during construction and verification the entire lift of fill is compacted to the project requirements. We recommend vibratory equipment such as a steel-drum roller or plate compactor be used to compact granular fill. Regarding the compaction of open-graded aggregates (e.g., MDOT 6AA crushed stone, or 1 to 3-inch size crushed aggregate), we recommend the material be compacted to a degree where is stable (does not deflect) under the weight of heavy construction equipment.

The onsite natural sands are considered suitable for re-use as engineered fill. We do not recommend reusing topsoil and other soils containing (one or more of the following) more than 4 percent organics, significant (greater than 5 percent) debris/rubble, or any undesirable materials (e.g., trash, expansive aggregates, etc.) as engineered fill. Also, we do not recommend reusing cobbles (greater than 3 inches in nominal diameter) as engineered fill as they are difficult to properly place and compact. Based on the borings, some segregation of cobbles from the natural sands is expected if the sands will be reused as engineered fill.

We do not recommend reusing the existing fill (as engineered fill) that contains a relatively high amount of debris/rubble. Overall, the amount of fill required for the site is expected to be minimal, and an excess amount of natural sands available (generated from the basement excavation) for reuse as engineered fill. The natural granular soils can be stockpiled (if site constraints allow) for later use as backfill onsite. Also, the natural granular soils visually classified as 'SP' or 'SP-SM' type soils (refer to the boring logs) may be suitable for reuse as MDOT Class II sand. To verify soils are suitable for reuse as MDOT Class II sand, we recommend performing particle size distribution tests on representative sample(s).

Some moisture conditioning (e.g., wetting) of the granular soils may be required to allow for proper compaction, depending on the site conditions and weather during the time of construction. We recommend construction specifications include moisture conditioning for engineered fill (within 2 percent of optimum moisture content).

The successful reuse of the on-site soils for engineered fill will depend on the time of year and the care the earthwork contractor uses during construction. During cold and wet periods of the year, the subgrade soils (in particular, soils containing significant silt and/or clay content) may become saturated and disturbed and the soils can be difficult to dry. If such conditions occur, the contractor may have to use more imported granular fill (sand) as engineered fill on the site.

For backfill in confined areas, and where drainage is required, we recommend using imported granular backfill such as MDOT Class II granular material, MDOT 21AA crushed aggregate, and/or MDOT 6A crushed stone. The specific type of imported fill will depend on a variety of factors. For most instances, we anticipate MDOT Class II granular material will be adequate. Crushed aggregate/stone would be necessary where the existing subgrade is in a wet condition (which is unlikely at this site due to the predominantly granular profile) and/or where site drainage is critical. In addition to the use of crushed stone, it would likely be necessary to cap the stone with MDOT 21AA crushed aggregate or wrap the crushed stone with a heavy-duty non-woven geotextile fabric, to prevent the surrounding soils from infiltrating into the crushed stone.

4.2 FOUNDATIONS

SME performed in-situ pressuremeter testing of the natural sands at borings B6, B7, and B9 (between depths of about 20 to 35 below existing ground surface) for this project. The pressuremeter test results were used to develop our recommendations for both shallow and deep foundations, which are described in the following sections.

Pressuremeter testing in the field models the static loading characteristics of the soil and is considered a more accurate indicator of the ultimate bearing pressure that can be achieved for foundations, and associated settlement, than performing analyses using empirical correlations based on dynamic test methods, such as the Standard Penetration Test (SPT) performed with split-barrel sampling. The pressuremeter test depths were selected to provide representative information corresponding to the bearing soils anticipated within a critical portion of the anticipated stress influence zone of the proposed foundations and near the design bearing level.

In the pressuremeter test, a radial expandable cylindrical probe is inserted into a prepared borehole at the selected test depth. The cylindrical probe was inserted into the borehole to the sampling depth and then expanded against the sides of the borehole by pressurizing fluid within the system using a hydraulic screw-jack console positioned at the ground surface.

Simultaneous measurements of pressure and injected volume within the probe were observed at the pressuremeter console and recorded. The injected fluid volume was incrementally increased until inflating the probe to near its maximum volume, or until significant creep deformation (soil failure) was observed.

Graphical results of the pressuremeter tests are included in Appendix A of this report. In addition, the results of the pressuremeter tests are tabulated below.

PRESSUREMETER TEST RESULTS

BORING NO.	TEST DEPTH (feet)	N₀0 VALUE (blows/foot)	YIELD PRESSURE (tsf)	LIMIT PRESSURE (tsf)	PRESSUREMETER MODULUS (tsf)
B6	29 – 31	29	24.1	N/A*	238
B6	34 – 36	62	23.2	N/A*	249
B7	19 – 21	25	18.0	N/A*	160
B7	24 – 26	40	21.0	50	369
B7	29 – 31	37	20.3	48	302
B7	34 – 36	74	31.4	N/A*	432
B9	19 – 21	19	12.1	25	132
B9	24 – 26	42	26.5	N/A*	541

*Pressuremeter probe could not be sufficiently expanded to estimate the soil's limit pressure.

The soil conditions at the pressuremeter test locations generally consisted of fine to coarse sand with gravel. Refer to the test results and boring logs in Appendix A for more information.

Based on the pressuremeter test results, we recommend shallow spread or continuous foundations, bearing on suitable natural sands for foundation support. Alternatively, we consider deep foundations consisting of Auger Cast-in-Place (ACIP) piles to be a viable foundation system for this project. Refer to the following sections for more information.

4.2.1 SHALLOW FOUNDATIONS

Shallow foundations are feasible for foundation support of the new building. We recommend shallow spread or continuous foundations, bearing on suitable natural sands, or on engineered fill (compacted per the specifications in this section) placed over suitable natural sands for foundation support. We understand column bays will be approximately 30 ft x 30 ft. Column loads for the main building are expected to range from 450 to 3,000 kips, with the design bottom of foundation elevation at about 20 feet bgs (approximately, elevation 830 feet). Canopy foundations will be located outside of the main building footprint (to the north) near the bus lanes. We assume canopy foundations will carry maximum loads of 300 kips, and be designed to bear near typical frost depth, i.e. about 4 feet below the final ground surface. The project's structural design is in the preliminary stage, and any deviations from the assumptions above must be brought to SME's attention for reevaluation of our foundation recommendations.

We recommend a maximum net allowable bearing pressure of 15,000 pounds per square-foot (psf) (based on a factor of safety of 3 or more) for the foundations bearing directly on suitable natural sands at depths of about 20 feet or greater bgs. A corresponding vertical subgrade modulus of 540 kcf (ksf/ft) may be used for shallow mat-type foundation design. This subgrade modulus value is based on the load applied to a 12-inch square plate that experiences 1 inch of deflection.

Based on the borings, we anticipate suitable bearing soils will typically be encountered at the main building's design bottom of footing level(s) (near 20 feet bgs). The natural soils will also need to be uniformly improved to achieve the relatively high design soil bearing pressure. This improvement can be accomplished by thorough compaction of the foundation bearing soils and/or undercutting to remove and replace some of the natural soils with compacted crushed aggregate. The following information in this section provides additional recommendations for foundation subgrade improvement.

We understand a partial (shallower) basement level will be located near the northwest corner of the building, although the depth (from existing grade) is unknown at this time. Based on the nearby borings (i.e. near where the former YMCA pool was located), the depth of existing fill could extend several feet below the planned bottom of foundation elevation(s). Therefore, we expect some relatively significant undercut depths will be required to extend these foundations to suitable natural sands. Another option would be to support this portion of the building on deep foundations (see Section 4.2.2).

The depth of existing fill varied from about 8 to 22 feet bgs in the bus/service lane areas outside of the main building footprint where canopy foundations are planned (refer to current borings B1A – B6, B11, and IT1 and previous borings B101, B102, B4, and B8). Due to the significant undercut depths required to reach the underlying natural sands (for footings designed to bear near typical frost depth), we recommend deep foundations for support of the canopy columns. Refer to Section 4.2.2 for more information.

Natural granular soil deposits can vary in resistance and relative density, as indicated by the N₆₀ values and pressuremeter test results. Also, the granular soils can become disturbed from the excavation activities and/or construction traffic. A "loosening" effect commonly occurs when existing soil overburden pressure is removed as a relatively deep (e.g. 20 feet) excavation is performed. Due to the expected variability in soil resistance, some areas of the site may not be sufficiently dense for the above recommended allowable bearing pressure after completing the excavation. Therefore, it will be important to compact (or improve) the foundation subgrade (in a uniform manner) to limit total and differential settlement between neighboring foundations. If subgrade compaction can adequately improve the strength of the subgrade, then the subgrade compaction, we recommend the foundation subgrade be thoroughly compacted with several passes from a vibratory hoe-pac mounted onto a large excavator (e.g., CAT 330, or larger). In addition, a relatively large (1,000 lb) plate compactor will likely be required to suitably densify the upper subgrade after hoe-pac compaction. Take care during the compaction operations to not damage nearby, existing structures.

Once the subgrade at the bottom of foundation elevation has been compacted, an SME field representative will need to test the bearing soils and verify the subgrade is suitable for the recommended soil bearing pressures. Due to the relatively high soil bearing pressures, the test method(s) implemented will need to extend approximately 5 to 6 feet (or possibly deeper) below the bearing surface. The purpose of the field testing is to verify the recommended design soil bearing pressure is achieved and the soils are suitably compacted to limit differential settlement.

If the subgrade compaction operation is unsuccessful in achieving a properly prepared subgrade, then foundation undercuts would need to be performed so that the bearing soils below the proposed footings can be replaced with a crushed aggregate rather than the onsite sands. Specifically, some of the sands may not have a relatively high internal friction angle (e.g., sand particles are too rounded, or low gravel content) necessary for the high soil bearing pressure. For backfilling a foundation undercut, and replacement with a crushed stone/aggregate, a more stringent compaction criterion (to a minimum of 97 percent compaction based on the Modified Proctor test) would be required.

Where crushed aggregate is required for backfilling undercuts, we recommend using MDOT 21AA crushed limestone. The foundation undercut will need to extend laterally on a two vertical to one horizontal slope from the outside edge of the foundation. Please refer to the Typical Foundation Undercutting Diagram below:

NOTES: 1. Foundations constructed on engineered fill placed in foundation undercuts cannot be earth-formed and will require placement of formwork.

2. Oversizing the excavation is not required along the edge of a perimeter foundation adjacent to a temporary earth retention wall.

The crushed limestone will need to be placed in lifts no greater than 9-inches in loose thickness and must be compacted to a minimum of 97 percent of the maximum dry density as determined by the Modified Proctor test. We recommend a heavy-duty hoe-pac mounted onto a large excavator (e.g., CAT 330, or larger) for compacting the crushed aggregate. Compaction tests using a combination of nuclear density gauge testing and dynamic cone penetrometer (DCP) testing would need to be performed on each lift to verify suitable compaction and that the required soil bearing pressure is achieved. Additionally, we recommend using the hoe-pac to densify the natural sand subgrade at the base of the undercut prior to placing the first lift of the crushed aggregate material.

The requirements for subgrade compaction need to be included in the project specifications. We recommend including a contingency in the budget for undercutting (about 3 feet) the footing subgrade and replacing it with MDOT 21AA crushed limestone (compacted to the recommended compaction criterion provided in this report). Also, we recommend selecting a foundation contractor with substantial experience in performing foundation subgrade improvement via compactive efforts in the Ann Arbor area.

For bearing capacity and settlement considerations, we recommend the dimensions for the heavilyloaded isolated spread foundations be at least 72 inches. Minimum widths for continuous (strip) footings are dependent upon design wall loads as recommended in the table below. Based on the current plans, we anticipate relatively light wall loads (10 klf or less).

MAXIMUM WALL LOAD (kif)	MINIMUM STRIP FOOTING WIDTH (feet)
20 or less	3.0
30	4.0
40	5.0

MINIMUM CONTINUOUS FOOTING LENGTHS

Foundations must be situated a minimum of 42 inches below final site grades along exterior walls or in any unheated areas for protection against frost action during normal winters. Also, the foundations and proposed bearing soils must be protected from freezing during construction if work occurs in the winter months.

The natural sands encountered at the site are subject to sloughing and caving. Due to these conditions, along with the fact that the excavation sidewalls will likely be disturbed by vibrations generated during foundation subgrade compaction, earth-formed foundations constructed within the natural sands (neat trench methods) are not considered feasible for this project. Rather, we anticipate the foundations will require formwork construction prior to concrete placement. Vertical excavation sidewalls (where practical) must be maintained during foundation concrete placement and must not be allowed to "mushroom out" at the top, particularly for exterior foundations (e.g. canopy foundations) as this can create a "frost lip".

We estimate total settlement for spread/continuous foundations using the recommended maximum net allowable bearing pressure and bearing on suitable soils as described above to be 1 inch or less. We believe differential settlement between neighboring foundations can be limited to ½-inch provided the subgrade is uniformly improved. Based on the granular site profile, settlements are generally anticipated to be elastic in nature, and are expected to occur (immediately to within a couple weeks) after the foundations are loaded. The settlement estimates provided are based on the available soil boring information, pressuremeter tests, the estimated maximum column loads, our experience with similar structures and soil conditions, preparation of the foundation bearing soils as recommended in this report, and field verification of suitable bearing soils by SME.

4.2.2 AUGER CAST-IN-PLACE PILES

A deep foundation system can also be considered for the building, particularly if/where shallow foundations are not feasible due to relatively heavy column loads, insufficient setback from adjacent properties, or other factors (e.g., canopy foundations designed to bear near typical frost depth within a zone of deep existing fill). We recommend auger cast-in-place (ACIP) piles as a deep foundation option for the project. The augercast pile installation is performed using drilling methods, which would limit unwanted vibrations (as compared to a driven deep foundation system). Also, project costs could be reduced by installing the foundation piles within the same mobilization as the augercast piles installed for the earth retention system (ERS) around the main building (rather than in separate mobilizations). Refer to Section 4.5 for more information regarding the ERS.

It must be noted that when two foundation types are used to support a structure (e.g. ACIP piles and shallow spread footings), there is some potential for differential settlement between the two foundations. This can result in stress cracks in the new building. For this option, we would recommend the building design include requirements to reduce the potential for differential settlement between the two foundation types. Such methods would be focused on the areas where the foundations transition from one type to the other. One method would be to maintain a minimum of 15 feet of lateral distance between the center of ACIP piles and the nearest interior column(s) that are supported on shallow foundations. The purpose of this is to distribute the differential settlement between two foundation types over a relatively significant distance. Also, spread foundations that are near the ACIP piles can be designed using a lower design soil bearing pressure (i.e. to reduce settlement) before transitioning to the recommended soil bearing pressure of 15,000 psf presented in Section 4.2.1. Another method would be to design construction joints at any transitions between the two foundation types. In addition, we recommend installing the interior building finishes between the two foundation types at the end of the project, after most of the building load has been applied to the foundations.

In general, we expect the ACIP piles would consist of a sand-cement grout mix (possibly with admixtures) pumped under pressure through the auger stem as the auger is slowly withdrawn from the hole. Add reinforcing steel to the column of grout once the augers are extracted to provide suitable reinforcement to resist uplift and/or lateral loads.

As the building's column loads could vary greatly (e.g. lighter canopies compared to heavier main building columns), a range of design working loads can be considered for the ACIP piles. A reduced pile capacity (and length) would be advantageous for light column loads to minimize the number of cobbles encountered during the pile installation. For illustrative purposes, the following table presents axial and uplift capacities for various pile diameters/lengths. We can review and comment on various pile diameters/depths/capacities the structural engineer may consider efficient for this project as the design plans are finalized.

ESTIMATED ACIP PILE CAPACITIES

LOCATION	PILE DIAMETER (inches)	PILE LENGTH (feet)	ALLOWABLE DOWNWARD PILE CAPACITY (kips) ⁽³⁾	ALLOWABLE UPWARD PILE CAPACITY (kips) ⁽³⁾
Capapy Columps ⁽¹⁾	18	40	250	150
	24	40	350	250
	24	40	350	250
Main Building	24	55	500	425
1 ootprinter	24	70	600	525

NOTES:

(1) Assumes top of pile begins at 5 feet bgs.

(2) Assumes top of pile begins at 20 feet bgs.

(3) Based on a factor of safety of 2.0 and neglecting resistance in the upper 5 feet of the pile.

The above pile capacities do not include down-drag forces as we do not expect site grades will be raised more than 1 to 3 feet for the project.

We base the pile capacities described above on a factor of safety of 2.0 (assuming performing a pile load test to confirm these capacities). We recommend the pile load test(s) be performed prior to installing production piles, and additional pile load tests if additional pile depth/diameter combinations are considered. SME can assist the design team with developing the pile load test program, which could also include lateral or tensile tests (if applicable to the pile design). We recommend performing the load test(s) based on ASTM D-1143, and the total load applied during the load test(s) based on at least twice the allowable working capacity. Where load testing is not practical or desirable (i.e., limited number of piles and/or lower pile capacities), the pile capacities can be designed for a factor of safety of 3.0 in lieu of performing the load testing.

We estimate total settlement of 1/2-inch to 3/4-inch can be achieved for ACIP piles (depending on the pile length) bearing on dense to extremely dense sands, under the design working capacities in compression and the recommended pile lengths (to be finalized during the design process as mentioned above), and constructed according to the recommendations of this report. About half of the estimated settlement would be due to elastic compression of the pile.

For lateral support, we recommend a design lateral resistance of 25 kips for an 18-inch diameter pile, and 40 kips for a 24-inch diameter pile. This resistance assumes the pile is in a fixed condition, and is based on a maximum ¼ inch of lateral deflection. For group piles, the actual lateral resistance will vary depending on specific pile spacing and direction(s) of the lateral load. We would be pleased to be retained to verify the lateral load capacity of grouped piles, as requested.

Steel reinforcement will depend on the final pile design needed to provide resistance to lateral and tensile loads in the pile, and (to a lesser degree) for axial loads. For tensile loads only, a single, large-diameter steel bar is often used for reinforcement extending through either part of, or the entire, pile length. For compression loads a set of smaller-diameter steel bars are recommended for either part of (or the entire) pile length. Reinforcing steel cages can also be installed in the upper portion of the piles to resist bending moments.

We recommend using a minimum design spacing of at least three pile diameters between adjacent piles (center-to-center) within a group. The use of closer pile spacing would require additional evaluation of the group effect. Generally, we recommend using a minimum of three piles per pile group for stability. Groups of one or two piles can be used if grade beams, rigid mats or other suitable methods are used to provide the required lateral structural support.

The bottom of exterior pile caps and grade beams must be situated a minimum of 42 inches below final site grades to mitigate the potential for frost action on the bottom of these elements. Pile caps and grade beams that may be located in heated areas can be situated at shallower depths.

The augercast pile equipment will need to be capable of readily advancing into the very/extremely dense natural sands (and past cobbles and construction debris within the existing fill) without overdrilling. Overdrilling can lead to reduced pile capacity and possible ground loss around the piles. Piles encountering 'auger refusal' above the design terminal depth (e.g., due to cobbles/boulders) will need to be further evaluated on a case-by-case basis to assess the design pile capacity, and if a reduced pile capacity is required. We recommend auger refusal be defined as a rate of less than 1 foot of penetration per minute under full operating torque of at least 75,000 foot-pounds.

There are inherent risks associated with installation of ACIP piles near existing buildings, roads, utilities and other structures. We recommend the contractor consider the following comments to reduce the risk of oversized holes due to mining, decompression, or loss of soil. To achieve the design tip elevation without excessive auger rotation, we recommend the contractor use a drill rig with a minimum torque of 75,000 ft.lbs. and the ability to use full torque at a slow rotational speed. Also, exercise care to not excessively rotate the augers when penetrating the sands, or when attempting to penetrate obstructions. Excessive rotation of the augers can result in a condition where the adjacent soils pull into the augered hole. Care must also be taken when pumping grout into the pile (during extraction of the augers) so a sufficient volume of grout is pumped (to prevent 'necking' of the pile), but not at too high of a pressure near existing structures/utilities to prevent damaging those structures/utilities. In addition, where overly loose/soft subgrade exists near/below existing structures, special shoring, bracing, and/or underpinning of the existing structures may be necessary to protect those structures from undesirable movement due to the aggravation of subgrade during pile installation. Maintain a minimum distance of 3 feet from the edges of existing structures/utilities to limit such disruptions.

We also recommend performing condition surveys and monitoring existing structures nearby the site. The monitoring program would need to include criteria for maximum allowable movement and protocol to proactively address recorded movement that could put nearby structures at an increased risk for undesirable movements.

Another consideration for the successful installation of ACIP piles is to coordinate the rate of auger withdrawal with the pumping rate of grout while providing an adequate grout head (pressure) to support the hole, resist hydrostatic pressures, and ensure all voids are completely filled with grout. Based on our experience, expect additional grout volumes within the granular soils (especially where cobble/boulders are encountered), and to densify overly loose soils (e.g., loose fill). During ACIP pile installation, the contractor needs to carefully sequence operations to avoid damage to previously installed piles during the installation of adjacent piles. The 2015 MBC indicates piles shall not be installed within six pile diameters, measured center to center, to an adjacent pile with grout less than 12 hours old. We suggest this spacing be used as a guide, and if interconnection between recently grouted piles is observed during construction, it may be necessary to increase this spacing or to provide a longer delay between pile installations.

The contractor may encounter obstructions and/or refusal to auger penetration above the target tip elevation during pile installation due to naturally occurring dense to extremely dense soil layers or cobbles and boulders. The type, size, and frequency of these obstructions will have varying effects on the installation. When possible, the contractor needs to penetrate the obstruction, maneuver around the obstruction (provided pile plumbness/alignment requirements are not exceeded) or remove the obstruction by augering or excavation from the surface, and then backfill the resulting excavation and resume pile installation. Excavations to remove obstructions must not undermine existing structures or new improvements.

If encountering auger refusal above the design tip bearing elevation, and the obstruction cannot be removed, or if the pile is knocked out of vertical alignment, it will be necessary to grout the pile from the point of refusal. The obstructed pile may either be rejected, or evaluated and assigned a reduced capacity, depending on circumstances and installation records. SME will need to evaluate these situations on a case-by-case basis during construction. Also, the project structural engineer will need to be contacted to evaluate the design loads at such locations, and to recommend locations of additional piles (if needed) and any design modifications to the associated pile caps. We recommend prospective contractors include unit rates in their bids for obstructions. We also recommend allocating a project budget contingency for obstructions during pile installation.

The contractor will need to have grout on-site prior to the beginning of auger withdrawal. The contractor must grout piles abandoned due to obstructions. We recommend the contractor maintain a minimum grout volume ratio of 1.3, which is the ratio of the actual grout volume to the theoretical pile volume, but anticipate higher grout volume ratios in the range of about 1.4 to 1.6 in some cases. During auger withdrawal, we recommend maintaining a minimum pressure head equivalent to 10 feet of grout above the auger tip, but the pressure can be reduced to a pressure head equivalent to 5 feet of grout when pumping near existing, and sensitive, structures, or within the upper 15 to 20 feet of the existing ground surface. We also recommend the contractor use a pile installation recorder during the installation of load test and production piles.

4.3 SEISMIC SITE CLASS

The site is located approximately at geographic location latitude N42.27818 degrees and longitude W83.74684 degrees. From available topographical information available for purposes of identifying the depth to bedrock, the approximate ground surface at the site is about elevation 850 feet. Based on Plate 13 – (Topography of the Bedrock Surface) in the Hydrogeologic Atlas of Michigan, the estimated top of rock is about elevation 675 feet from linear interpolation of contours plotted at 50-foot intervals. Based on the above information, the glacial drift is roughly 175 feet thick.

The known N-values and shear strengths for drift at this site are limited to the explored depth of about 90 feet below the ground surface at the borings drilled for this evaluation. Based on the borings performed for this evaluation, our previous borings performed onsite, and our experience with the local geologic conditions, we anticipate the soil to be of similar or better resistance for the remaining geologic profile to 100 feet below the ground surface. Preliminarily, Seismic Site Class C applies to this site in accordance with the 2015 Michigan Building Code (MBC) (referencing Table 20.3-1 in ASCE Standard ASCE/SEI 7-10), based on the available borings and shear wave velocities measured by SME at other, nearby project sites. Given the scope of this project, we recommend retaining SME to measure the shear wave velocity profile (in the upper 100 feet of the soil profile) to confirm the seismic site class (and resulting design category).

Based on the location of the site, the mapped and calculated accelerations are summarized in the table below. Based on the referenced design values, preliminarily, Seismic Design Category A is anticipated to be applicable for this site.

ACCELERATION TYPE	ACCELERATION DESCRIPTION	VALUE (g's)	DESIGN CATEGORY A ACCELERATION REQUIREMENTS (g's)
Ss	Mapped Ground Motion (0.2 second period)	0.104	
S ₁	Mapped Ground Motion (1.0 second period)	0.048	
S _{DS}	Seismic Design Value (0.2 second period)	0.090	S _{DS} < 0.167
S _{D1}	Seismic Design Value (1.0 second period)	0.048	S _{D1} < 0.067

SEISMIC ACCELERATION PARAMETERS SUMMARY TABLE

NOTE: Risk Category 3 assumed for the building.

4.4 BELOW-GRADE WALLS AND DRAINAGE

Below grade walls will be constructed around the building perimeter for this project, which are anticipated to be up to 18 feet tall. In addition, we anticipate that some shorter walls with be constructed inside of the building for the elevator pits and be up to 7 feet tall. At these depths, we anticipate that walls will be supported by shallow spread-type foundations that are suitable for the recommended design soil bearing pressure provided in Section 4.2 of this report. Another option would be to utilize the perimeter earth

retention system (ERS) required for construction of the new building for the perimeter below-grade walls (as a permanent earth retention system). Refer to Section 4.5 for details. However, we understand the project team prefers a standard offset (i.e. a few feet) between the ERS and below-grade walls.

Below-grade walls need to be backfilled with MDOT Class II granular material. We recommend establishing positive surface drainage away from exterior below-grade walls (where practical). Below-grade wall backfill that will support floor slabs and other improvements will need to be compacted to a minimum of 95 percent of the maximum dry density determined by the Modified Proctor test. As a minimum, backfill not used for structural support of floor slabs or sidewalks must be compacted to the degree where it is stable under construction equipment. Exercise care during compaction of the wall backfill to avoid overstressing the walls and design the walls to accommodate the additional stresses associated with operating compaction equipment adjacent to the walls.

For rigid walls backfilled with a free-draining granular material and a level finish surface behind the wall, we recommend an equivalent fluid pressure of 55 pcf for design. Also, any additional lateral pressures due to surcharge loading, such as adjacent floor or column loads, traffic loads, sloping ground, parking loads, or adjacent structures must be added to the above lateral earth pressures for design.

We encountered groundwater during drilling at about 42 to 48 feet bgs. Based on the short-term groundwater levels observed in the borings, it appears that static groundwater levels are located well below the proposed bottom of the structure. However, the groundwater seepage from temporary/perched sources will fluctuate and could be heavy at times, and we recommend the design of the below-grade walls consider the potential for a (temporary) buildup of hydrostatic pressures.

In the long term, the groundwater needs to be controlled to minimize water seepage and hydrostatic pressures against the walls. We recommend drainage controls (i.e. edge drains) be installed around the perimeter of below-grade walls. We recommend the perimeter edge drains consist of a minimum 4-inchdiameter perforated, rigid, plastic drainpipe, surrounded by 6 inches of filter material, such as pea gravel (MDOT 34G), which is completely wrapped with a filter fabric. The backfill behind the walls will need to consist of a well-draining granular backfill (e.g. MDOT Class II sand). Due to the height of the walls, the drains will need to be tied into a sump system discharging water accumulations into a nearby storm drain or stormwater management system. Clean-outs must be provided that are easily accessible to access the drains to maintain them in proper working condition. If walls are designed without drainage controls, then we recommend using a higher lateral earth pressure of 95 pcf for sizing the permanent walls. In addition, we recommend waterproofing below-grade walls in areas that are sensitive to groundwater seepage (e.g. substation room, mechanical and electrical utility rooms, elevator shafts, etc.). At a minimum, below-grade walls need to be dampproofed as a precaution against water infiltration through the walls. We would be pleased to be retained to provide waterproofing design details for this project, if requested.

Due to the relatively well-draining subgrade, we do not consider the installation of a below-slab drainage system (below the basement slab-on-grade) necessary provided water accumulations behind the below-grade walls are managed per the recommendations in this section.

The following parameters for evaluating the stability of the retaining walls assume the base of the wall bears directly on suitable natural, granular soils and the wall is backfilled with a well-draining granular backfill. To evaluate the sliding of the wall, compute the sliding resistance at the base and the passive (resisting) and active (driving) earth forces. For below-grade walls bearing on the medium dense to dense natural sands encountered at the site, we recommend an ultimate sliding coefficient of 0.50. Passive, active and at-rest earth pressure coefficients of 3.0, 0.33 and 0.50, respectively, may be used for design in combination with a unit weight of backfill of 120 pcf. This assumes a granular backfill will be in contact with the wall on the backside and on the front, at the toe of the wall. Typically, a safety factor of 1.5 to 2.0 is used for the lateral sliding resistance analysis. Consider the movement required to achieve the full passive pressure when using passive pressure for resistance.

When using the active earth pressure coefficient, it assumes the wall is flexible enough to permit the active earth pressure condition to be reached. An outward movement away from the backfill equal to approximately 0.001 times the height of the wall is generally required to achieve the active earth pressure

condition for granular backfill. If the wall is restrained or is rigid enough so that it does not rotate sufficiently to reach the active earth condition, a higher lateral earth pressure (at-rest condition) would need to be used for design. In addition to checking sliding stability of the walls, evaluate the safety factor from overturning, location of the resultant force at the base, mass stability, and contact pressure at the base.

4.5 EARTH RETENTION AND UNDERPINNING

Due to the proposed building footprint and excavation depths, an earth retention system (ERS) will be required around the entire building perimeter. The perimeter earth retention system will need to provide temporary lateral earth support (during construction) and can also be designed to provide some permanent lateral support of the building perimeter if needed. For this option, additional permanent lateral earth support will need to be provided by the below-grade (and at-grade) concrete floors. To provide additional building space, shotcrete could be applied to the inside face of the ERS (instead of constructing a perimeter cast-in-place concrete wall as discussed in Section 4.4) provided that the ERS is designed as a permanent system.

Depending upon the proximity of nearby structures to the proposed excavation and the sensitivity of those structures to movements, additional measures such as underpinning may be required to maintain the integrity of the existing site grades and building structures.

We recommend the perimeter ERS consist of a tangential augercast pile wall. We also considered a predrilled soldier pile and lagging wall. However, such a system could be prone to ground loss from behind the wall, as (based on our experience in Ann Arbor) the natural sands have the propensity to slough, or 'run', once exposed. Thus, grouting behind the lagging boards as the excavation proceeds would be required to control running and sloughing of the subgrade. The tangential augercast pile wall system is preferred because it has the ability to reduce the potential for ground loss from behind the wall. However, we recommend an SME representative be onsite during the installation of the ERS and also during the excavation process, to verify that pile alignment is maintained and any gaps between the piles discovered during the excavation are fully grouted/covered (with structural shotcrete) to prevent ground loss from behind the walls. Even with a tangent wall system, there can be gaps between the auger cast piles where soil can slough/cave through the wall.

Regarding foundation underpinning (if needed), several methods are considered viable for this project. Underpinning with segmental cast-in-place concrete units is one option. However, prior to constructing the segmental concrete units, it would be necessary to pre-grout within/around the area to be underpinned as the natural granular soils at this site are subject to caving/sloughing. Another option is mini-piles, such as push-piers or drilled micro-piles. The piles are typically designed to restrain axial loads from existing foundations. In addition to the piles, some lateral restraint of the soils below the foundations would be required. This can be accomplished by pre-grouting the soils and/or constructing a shotcrete and soil nail wall.

Due to the relatively deep excavation proposed for this project, we anticipate that at least one row of grouted tiebacks will be required along the building perimeter to resist the lateral earth pressures. This assumes that there is sufficient working space within the excavation and conflicts with neighboring belowgrade structures can be avoided. For tiebacks that extend beyond the property boundaries, authorization from the neighboring property owner(s) would be required. As an alternative to the tiebacks, internal bracing could be installed in some areas. The contractor would need to carefully sequence the installation (and removal) of the bracing to avoid conflict with the construction of the building elements.

The design of the ERS and foundation underpinning depends upon a number of design-focused variables (e.g., minimum setback/space requirements, design load combinations, final site grades, conflicts with existing or new construction, etc.) requiring consideration in selecting an appropriate system. The design must also consider construction sequencing to achieve a completed (built) product implemented in harmony with the overall progress of construction. In addition, the successful performance of these systems will be based on limiting the movements of the nearby structures. Strict settlement/movement criteria will need to be assigned for critical structures, whereas less-stringent criteria may be adequate for

an ERS only supporting non-structural subgrade. The limits on settlement/movement, as well as the specific type of system and sequencing required, will need to be determined by the design engineer on a case-by-case basis. SME is capable of, and would be pleased to provide, design services for the ERS and any required foundation underpinning.

Controlling lateral movements of the ERS is a critical issue in limiting potential damage to nearby existing structures. Please note the cost of the system will be directly related to the limits placed on the lateral movement. We also recommend a baseline condition assessment be performed to record and document the existing condition of any structures within at least 50 feet of the proposed ERS prior to its installation. It appears the Blake Transit Center to the north, and road right-of-ways to the east, west, and south, are within these limits of the perimeter ERS.

This condition assessment could assist in evaluating if distress to existing structures occurred during below-grade construction or was a pre-existing condition (particularly for structures with limited tolerance for movement/distress). In addition, a post-condition survey may also be required. We would be pleased to provide the baseline and post-condition assessments for this project, if requested.

We also recommend monitoring the ERS and nearby structures for movement using survey-grade equipment and monitoring techniques. The survey readings will need to be accurate to within 0.01-foot and will need to be obtained regularly (at least daily) throughout the monitoring period. We anticipate the monitoring period will begin prior to performing the excavation for the basement, and will end soon after the below-grade construction of the permanent structure is substantially completed. We would be pleased to provide the survey services for this project, if requested.

4.6 STABILITY OF SLOPES

Where there is enough space or setback within the mass excavation, we expect excavations can be temporarily sloped back in accordance with applicable MIOSHA regulations. For the natural sands (where no groundwater is present), we recommend excavations be temporarily sloped at a 1.5 horizontal to 1 vertical slope. A steeper temporary slope (up to 1 horizontal to 1 vertical) may be adequate for a temporary excavation depending upon specific subsurface conditions and the expected performance of the slope. Generally, temporary slopes consisting of well-compacted soils with appreciable fines content (e.g. silt and/or clay) are more likely to perform adequately at a 1H:1V slope, whereas granular soils with little fines content (and overly loose/soft soils) are subject to raveling/sloughing and cannot maintain a relatively steep angle (1H:1V) for a significant period of time.

Shallower slopes may be required to address other constraints, such as to provide easier access and maneuverability for construction traffic on the slope. The contractor must provide a safely sloped excavation or an adequately constructed and braced shoring system in accordance with federal, state and local safety regulations for individuals working in an excavation that may expose them to the danger of moving ground. If material is stored, or if operating heavy equipment near an excavation, use appropriate shoring to resist the extra pressure due to the superimposed loads.

4.7 SOIL CORROSIVITY

SME submitted four composite samples of the existing fill soils to Brighton Analytical for corrosion testing, including soluble sulfate and chloride concentrations, redox potential, and soil pH. SME also performed laboratory resistivity testing of these samples. We selected the test depths/locations based on anticipated locations of underground utilities that could be installed for the project. Refer to the tables below.

CORROSIVITY TEST RESULTS

BORING NO.	SAMPLE DEPTH (ft.)	USCS SOIL TYPE	SOIL pH	SOLUBLE CHLORIDES (ppm)	SOLUBLE SULFATES (ppm)	REDOX POTENTIAL (mV)
B1A	1 – 10	SP, SP- SM (Fill)	11.3	13	27	140
B2, B4	1 – 7.5	SP, SP- SM (Fill)	11.2	7.6	24	140
IT1	1 – 10	SP-SM (Fill)	11.3	18	14	120
B11	1 – 10	SP-SM (Fill)	11.6	10	17	130

RESISTIVITY TEST RESULTS

			RESISTIVIT	(OHM-CM)
BORING NO.	DEPTH (ft.)	USCS SOIL TYPE	NATURAL MOISTURE CONTENT	SATURATED
B1A	1 – 10	SP, SP-SM (Fill)	10,950	1,468
B2, B4	1 – 7.5	SP, SP-SM (Fill)	13,560	1,443
IT1	1 – 10	SP-SM (Fill)	12,682	1,003
B11	1 – 10	SP-SM (Fill)	34,866	1,254

In general, based on the test results, we consider the subgrade mildly to essentially non-corrosive to buried metals. Refer to the table below. The corrosion potential could be further reduced if a mass removal of the existing fill (and replacement with a well-draining granular fill) if performed. While the existing fill is debris-laden, it did not appear to be potentially expansive, explosive, or chemically active.

SOIL RESISTIVITY CORROSIVITY RATING

SOIL RESISTIVITY (ohm-cm)	CORROSIVITY RATING
>20,000	Essentially non-corrosive
10,000 - 20,000	Mildly corrosive
5,000 - 10,000	Moderately corrosive
3,000 - 5,000	Corrosive
1,000 - 3,000	Highly corrosive
< 1,000	Extremely corrosive

Corrosion Basics: 2nd Edition by Pierre R. Roberge (2006)

Per ACI 318-14, Table 19.3.1.1, corrosion protection of reinforcement exposed to these samples categorize as C1 in most areas (measured chloride levels were relatively low) but categorize as C2 for exterior concrete pavement or other areas exposed to moisture and external sources of chlorides (e.g., deicing chemicals, salt, etc.). The highest reading for sulfates is 27 parts per million (ppm). Per ACI 318-14, Table 19.3.1.1, sulfate levels in these samples categorize as S0 for potential corrosion of metals and cement. Refer to the table below.

ACI 318 EXPOSURE CATEGORIES AND CLASSES

CATEGORY	CLASS	CONDITION
	S0	< 150 ppm
Sulfator (S)	S1	150 to 1,500
Sullates (S)	S2	1,500 to 10,000
	S3	>10,000
	C0	Concrete dry or protected from moisture
Chlorides (C)	C1	Concrete exposed to moisture but not to an external source of chlorides
	C2	Concrete exposed to moisture and an external source of chlorides from deicing chemicals, salt, brackish water, seawater, or spray from these sources

Table 19.3.1.1 from ACI 318-14 Chapter 9

Metallic conduits, pipelines, and other below-grade utilities in contact with relatively low-permeable granular soils (e.g. containing significant silt and/or clay content), could potentially experience aggressive corrosion. Balance the risk of failure due to corrosion against the type of corrosion protection used. For critical utilities or structures (underground storage tanks, natural gas lines, fire protection lines, etc.) in contact with saturated soils, a high level of corrosion protection (such as cathodic protection) may be warranted. For other less critical structures, a suitable coating material could be used for these elements, or the utilities can be surrounded by a well-draining granular backfill with underdrain(s) (where required) located below the structures to maintain moist conditions around the structures. However, to limit corrosion on all buried structures, we recommend the following soils not be placed adjacent to buried metallic utilities: topsoil, organic soils, fill soils, cinders, shale, clay/silt or other deleterious materials, and mixtures of sand and clay.

In general, we recommend covering metallic conduits and structures with a suitable coating material and embedding these structures in a clean granular soil backfill (e.g. MDOT Class II sand) free of salts or other materials increasing corrosion potential. Where practical, we recommend locating metallic conduits/structures away from areas exposed to, or impacted by, road salts as they can increase the chloride concentrations in the soil over time. If necessary, an appropriate underdrain system can be installed below the conduits/structures to control possible "perched" groundwater. Also, electrically isolate buried utilities of different metallic construction from each other to minimize galvanic corrosion problems. In addition, we recommend new piping and conduits be electrically isolated from existing ones so the older metallic structure will not increase the rate of corrosion of the new piping.

4.8 INFILTRATION AND STORMWATER CONSIDERATIONS

SME completed a single double-ring infiltration test near boring IT1 on January 10, 2023. Per the project team's request, we performed the infiltration test at about 10 feet bgs. We understand a below-grade stormwater detention system is being considered in this area.

After drilling boring IT1 to 10 feet bgs, we used a 7-inch diameter hand auger to remove caved subgrade from the borehole before inserting 4- and 6-inch diameter PVC casings into the subgrade for performing the infiltration test. The soil conditions at the test depth consisted of existing sand fill with varying amounts of concrete debris (no measurable groundwater was present in the borehole). After completing the test, we advanced a hand auger an additional 2 feet (about 12 feet bgs) within the borehole. The stratum of existing fill continued to the terminal boring depth (12 feet). Refer to boring log IT1 for more information.

We drove the PVC pipes about 2.5 inches into the subgrade below the bottom of the borehole. We filled both PVC pipes with about 12 inches of water and used a water level measuring tape with markings every 0.01 feet to measure the rate of drop of the water. We maintained the water level within about 6 to 12 inches above the bottom of the boreholes for one hour to "pre-soak" the test holes.

Per the Low Impact Development (LID) Design Manual for Michigan developed by SEMCOG, we performed a minimum of four trials while recording a stabilized rate of drop (a difference of 0.25 inches or less between the highest and lowest water readings of four consecutive tests).

The table below summarizes the results of the infiltration test.

INFILTRATION TEST	TEST DEPTH (feet)	SOIL AT BASE OF INFILTRATION RING	DURATION OF TEST (hours)	ESTIMATED INFILTRATION RATE (cm/sec)	ESTIMATED INFILTRATION RATE (inch/hour)
IT1	10.0	Fill – Fine to Coarse Sand with Silt and Gravel – Few Concrete Fragments – Brown – Moist – Medium Dense (SP-SM)	2.3	4.1 x 10⁻³	5.8

INFILTRATION TESTING RESULTS

For the proposed detention chamber, we present the following considerations/recommendations:

- The existing fill at the infiltration boring IT1 extends at least 12 feet bgs. Near boring IT1 (e.g. boring B5, B6, and previous boring B102), the existing fill extended 9 to 22 feet bgs. It appears the depth of existing fill could vary substantially near the proposed detention chamber. While we measured some infiltration capability (i.e. 5.8 inches per hour, unfactored) at test IT1, we anticipate the underlying cleaner, natural sands could provide higher infiltration rates (if needed for design).
- We expect that the infiltration capability of the fill soils will vary depending on its composition, notably the percentage of debris (concrete, brick, etc.). Therefore, establish infiltration areas in soils that consist of predominantly granular material (e.g., natural sands or sand fill with trace silt/clay content). Remove larger pieces of debris from the subgrade within the infiltration area. Design the infiltration area to include a minimum thickness of 30 inches of granular soils directly below the design infiltration elevation and above groundwater levels. Due to the depth of existing fill, this will require likely require undercutting of the existing fill and replacement with a granular material. The granular material could include imported fill, or relatively clean natural sands excavated from the building area.
- After excavating to the design bottom of the chamber (and undercutting as necessary, as described above), it will be critical to perform a field evaluation of the exposed subgrade as the subsurface conditions will likely vary. Perform hand auger borings and particle-size distribution tests to verify the infiltration characteristics of the in-situ subgrade.
- We recommend using a design infiltration rate of up to 2.5 inches per hour for design of the stormwater system within similar subgrade and elevation as IT1. The design infiltration rate is based on applying a minimum factor of safety of 2 to the measured rate, and is relatively conservative given the limited amount of infiltration test data available. If plans are changed during the course of the project (e.g. alternate location for the proposed chamber), it must be brought to SME's attention, as our recommendations may need to be revised.

As with any storm water infiltration, changes to subsurface conditions (e.g. due to climate, changing ground surface levels, natural variations in the subsurface profile, nearby construction, etc.) will influence water infiltration into the subgrade. We recommend considering such changes as part of the design of the stormwater infiltration system. In addition, future maintenance (e.g. removing debris, sediments, inhibiting vegetation and other materials that would obstruct the infiltration of surface water into the subgrade) is expected. The maintenance will depend upon a variety of factors (e.g. accumulation of sediments, groundwater levels, frequency of precipitation event(s), etc.). We recommend a regularly implemented maintenance program of infiltration system(s), preferably during and shortly after periods of wet weather, to assess the system(s) ability to infiltrate surface water over time.

4.9 CONSTRUCTION CONSIDERATIONS

Based on our experience and observed groundwater levels at the borings, groundwater is not expected to be encountered during construction. However, water from precipitation, surface runoff, perched groundwater source(s), or other events could be encountered. Where natural granular soils are exposed, we anticipate the water will drain into the subgrade. If water accumulates on the ground surface, we expect it can be controlled using standard sump pit and pumping procedures.

Excavations for new foundations shall not extend below existing foundations (within the zone of influence of those foundations) without first properly underpinning or shoring the existing foundations. Underpinning or shoring must be properly designed by a qualified professional engineer and installed by a contractor experienced with construction of underpinning or shoring systems. Take care during subgrade compaction (for utility trench backfill, foundation subgrade improvement, etc.) to not damage nearby, existing structures.

The contractor will need to remove ponded or standing water from areas where water collects and prevent surface water runoff from reaching foundation excavations or the prepared subgrade. We recommend subgrade soils which become disturbed be removed and replaced with engineered fill. Under adverse weather conditions, areas of exposed subgrade at the site may be protected by placement of crushed concrete or crushed aggregate on the exposed subgrade. In addition, we recommend the placement of foundation concrete be done as soon as foundation excavations have been completed and approved to reduce the potential for disturbance of the foundation subgrade.

Take care during demolition and earthwork operations to protect adjoining and adjacent structures to remain. Do not undermine existing structures. Where necessary, install temporary shoring/bracing to properly shore/brace existing structures and protect them from distress. Any shoring/bracing will need to be designed by a professional engineer licensed in the State of Michigan.

The contractor must provide a safely sloped excavation or an adequately constructed and braced shoring system in accordance with federal, state and local safety regulations for individuals working in an excavation that may expose them to the danger of moving ground. Additionally, if storing material or operating equipment near an excavation, use appropriate shoring to resist the extra pressure due to the superimposed loads.

Special handling and/or disposal of onsite soils and/or groundwater may be required at this site. Refer to the project environmental consultant for additional information regarding handling and/or disposal of onsite soils and/or groundwater.

5. DESIGN DEVELOPMENT CONSIDERATIONS – ALTERNATE CONCEPT

This section provides design development considerations for the 7-story, slab-on-grade building option being considered by the project team. Our intent is to present considerations expected to significantly affect project cost, schedule, and complexity for the alternate option. We can provide more detailed recommendations for this alternate concept (i.e. similar to Section 4 above) if it is selected later as the primary option.

5.1 SLAB AND FOUNDATION SUPPORT OPTIONS

We have encountered a relatively deep profile of existing fill at this site, extending up to 22 feet bgs. The existing fill is unsuitable for conventional grade slab/shallow foundation support. We recommend three options to consider for supporting the building slab and foundations, which are discussed in greater detail throughout Section 5:

- **Option 1**: Completely remove and replace the existing fill with engineered fill and then construct a conventional slab-on-grade and shallow foundation system. This would require constructing a temporary earth retention system (TERS) to protect the neighboring properties/road right-of-ways before completely removing the existing fill. We expect at least a portion of the existing fill will need to be removed from the site (with associated environmental costs). The existing fill that is predominantly granular could be reused as engineered fill; however, segregation of debris from the sands would be required first. Depending on the compaction specification for engineered fill (and material type), we estimate net allowable bearing pressures of 4,000 8,000 psf are achievable for shallow foundations supported by granular engineered fill.
- **Option 2**: Leave the existing fill in place and support the slab and structure on a deep foundation system (e.g. augercast piles) extending through the fill into natural sands. The project team needs to consider utility support from the structural slab compared to utilities supported on the fill, with resulting settlement in the debris laden fill. Due to the debris-laden fill, it will be difficult (if not impractical) to install the piles, and there could be significant associated costs (e.g. due to down time, robust equipment requirements, redrilling piles, etc.). Some pre-excavation may be required to remove known obstructions (e.g. buried pool slab) prior to pile installation. For this option, we recommend engaging a deep foundation contractor with local experience to further review feasibility of this option.
- **Option 3**: Leave the existing fill in place and install a ground improvement system prior to constructing the slab-on-grade and shallow foundations. In general, ground improvement systems consist of a grid of piles (i.e. vertical elements) installed below a load transfer platform (LTP). Therefore, we expect similar installation challenges as described for Option 2. The advantage of this option over Option 2 is that the slab-on-grade would not be structurally supported, and therefore utilities (e.g. mechanical, electrical, plumbing, etc.) could be installed below the slab and maintained as necessary without damaging a structural slab system. More information on ground improvement systems is provided in the following section.

5.2 GROUND IMPROVEMENT OPTIONS

We considered several intermediate foundation options for this site, including aggregate pier methods, Controlled Modulus Columns[™] (CMC), and rigid inclusions. CMCs are a patented technology by Menard (www.dgi-menard.com). Rigid inclusions are grouted elements installed in a similar fashion to auger castin-place (ACIP) piles, i.e. by augering into the soil and pumping grout through the hollow auger under pressure.

Aggregate piers consist of vertical columns of aggregate compacted in controlled lifts. There are several methods of installing aggregate piers, including the Impact Pier or Rampact method performed by Geopier[®] Foundation Company; or using vibro-compaction type vibrators as used by Hayward Baker, Nicholson Construction Company, and others. The advantage of rigid inclusions (and CMCs) over aggregate piers is the increased lateral stiffness and confinement provided by the grout, which can provide higher design bearing pressures.

CMCs consist of cement grout or concrete-filled columns installed with specially designed augers or mandrels. The augers used to install CMCs are specially designed to displace the soil laterally, with virtually no spoils or vibration during column construction. The diameter, spacing, and installation techniques are designed to be a composite soil/cement ground improvement and improve the overall subgrade modulus to control settlement (deformation). It could be difficult to install CMCs through the fill as it is debris-laden and may not displace laterally.

Preliminarily, we recommend rigid inclusions as a preferred option when considering the installation challenges and required allowable bearing pressure for the foundation loads. Also, we recommend further discussing the feasibility of these options with experienced specialty contractors.

Ground improvement elements are not installed to be in direct contact with the building slab or structure. Rather, the elements are terminated in an aggregate transfer platform located between the subgrade and building slab/spread foundations. This aggregate layer can include geotextiles for reinforcement and is sometimes referred to as a Load Transfer Platform (LTP). The performance specification needs to indicate if geotextiles are acceptable or not. LTPs are typically in the range of about 2 to 4 feet thick. The slab and foundation loads are transferred to the LTP and then to the vertical elements, reducing the overburden pressure applied directly to the slab subgrade. The ground improvement/aggregate layer/ slab and foundation system is typically designed as a complete system, often by a design-build contractor completing the work. Therefore, the material used to raise grades (if any) must be coordinated with the ground improvement system designer.

Shallow spread foundations to support the proposed building are placed on the LTP underlain by existing fill after these soils are improved by installing the rigid inclusions (vertical elements). An area of replacement ratio is commonly used to determine the number of vertical elements required beneath each foundation. A triangular or square grid pattern is commonly used beneath grade slabs. The specialty contractor is responsible for the design and successful performance of the ground improvement system, including any necessary structural fill layer(s). The performance requirements typically include improving the site soils to a specified design bearing pressure and maximum settlement values beneath foundations. For grade slab areas, the performance requirements also include a minimum specified average subgrade modulus. The performance requirements also commonly include a warranty period that begins after building occupancy. A 1-year warranty is common, but a longer warranty period can also be specified. SME can provide performance-based technical specifications under separate cover, if requested.

Scaled plate load testing on an individual rigid inclusion will need to be performed near the beginning of the project to verify the design parameters used to design the ground improvement system. One plate load test is commonly performed for every 300 ground improvement elements of the same type installed. A full-scale foundation load test could be performed to verify the foundation performance requirements are met, however, a full-scaled foundation load test is more costly to perform than a plate load test on an individual element.

Based on our experience with similar projects using ground improvement methods, it will likely be necessary to vertically form the foundations due to the potential for sloughing of the existing fill soils and structural fill layer (if used). Any caved soils must be removed from the foundation excavations before placing concrete.

Excavations for foundations and utilities must be coordinated with the ground improvement contractor and must be completed as recommended by the contractor or the performance warranty might not be enforceable.

5.3 SEISMIC SITE CLASS

The alternate concept is a slab-on-grade structure that would be situated about 20 feet higher (relative to the existing ground surface) than the primary concept. Based on the subsurface profile, Seismic Site Class D would apply for this situation as the average N-values for the soil profile (averaged over the upper 100 feet) and anticipated shear wave velocity values would be lower relative to the primary concept. It is possible that Seismic Site Class C could still apply; however, shear wave velocity testing would be required for confirmation.

6. PAVEMENT DESIGN RECOMMENDATIONS

Based on the provided site plan for the primary concept, new pavements will be constructed north of the main building. The pavements will be used for bus travel routes and parking areas, in addition to emergency vehicle access and trash pickup. Given the loading and traffic conditions, we recommend using a heavy-duty concrete section. Please contact SME if a heavy-duty asphalt section is being considered. However, note that a concrete section is preferred over asphalt to handle the heavy point-type loading, turning loads (from buses entering/exiting the site), and to help "bridge" over marginal subgrade conditions.

For this report, we have assumed final site grades around the pavement perimeter will slope (downward) away from the new pavements. Specific traffic counts are not available at this time. Please contact us when the pavement locations, grading plans, and traffic conditions are finalized. Consider the following pavement recommendations preliminary and subject to change based on final pavement locations, traffic conditions, grades, site drainage, etc.

6.1 PAVEMENT DESIGN CRITERIA

Specific traffic information was not provided for use in developing pavement recommendations for this project. Please note that recommended pavement cross sections are highly dependent on traffic loading conditions (i.e. number of equivalent single axle loads, or ESALs). For example, the number of daily bus arrivals/departures at the residential complex could significantly impact the recommended pavement profile thickness.

For this report, we estimated 0.57 ESALs per bus per the Traffic Monitoring Guide developed by the Federal Highway Administration. We estimated 45 buses at the complex per day (3 per hour for 15 hours per day) for 365 days per year. Our traffic estimates also include additional traffic loads over 20 years to account for anticipated heavy equipment used for snow removal between November and March. Our snow removal assumption includes about four passes (in each direction) of a plow truck and/or loader and gravel truck per snow event (amounting to 3 ESALs per event) and assumes 40 snow events per year (two events per week over five months). This results in an additional 2,400 ESALs for a 20-year design pavement lifetime (over all the pavement types).

We did not account for construction traffic loads in our design. Please contact SME if the pavement will be subjected to construction traffic, e.g. if the pavement needs to be utilized during the building construction.

We designed the pavements for this project based on:

- The findings from the borings and our experience with sites with similar subgrade conditions (used to estimate the Modulus of Subgrade Reaction).
- Design parameters using the AASHTO Guide for Design of Pavement Structures.
- Estimated vehicle traffic counts (as described above).

DESIGN PARAMETERS – CONCRETE PAVEMENT

PARAMETER	RIGID PAVEMENT
Design Period	20 years
Traffic	350,000 ESALs (Heavy Duty)
Design Reliability	85%
Standard Deviation	0.35 (rigid pavements)
Modulus of Subgrade Reaction	150 pci
Drainage Coefficient (aggregate base)	1.0
Initial Serviceability Index	4.2
Terminal Serviceability Index	2.0
Concrete Compressive Strength	4,000 psi
Concrete Elastic Modulus	3,600,000 psi
Concrete Modulus of Rupture	600 psi
Load Transfer Coefficient	3.6

The design subgrade reaction assumes a portion of the existing fill will be left in-place during construction, given the extent and depth of the existing fill. Completely removing the existing fill and replacing it with engineered fill, as described earlier in this report, would reduce the risk of poor pavement performance and it is possible a thinner pavement section could also be used for design. As such, consider our pavement recommendations preliminary until the project team has made a decision regarding the options available for subgrade improvement at the site.

6.2 SUBGRADE PREPARATION

Assuming constructing pavements over the existing fill is acceptable (refer to Section 4.1.1 of this report), the subgrade preparation for the new pavement areas would consist of complete removal of the existing surficial pavements and other site features, subgrade assessment and preparation (i.e., a field evaluation of the condition of the exposed subgrade with thorough compaction, proofrolling, fine grading, and undercutting to remove and replace low-strength subgrade), and placement of new pavement layers. Protect utilities, curbs, and other existing structures to remain. Field locate existing utilities prior to excavation and take the necessary precautions to work safely around active utilities.

Due to the variable condition of the existing subgrade, subgrade undercuts may be required in some areas of the site. We recommend the earthwork and pavement construction occur in the summer months, and when large construction equipment can effectively operate on the site, to limit the potential for significant undercutting. The pavement thickness recommendations in this report assume a marginal strength subgrade to help account for some of the variable strength conditions, but additional crushed stone (and possibly geotextile or geogrid layer(s)) may be required. We recommend an SME representative be onsite during site earthwork and pavement construction to assist in making judgments in the field regarding subgrade stability.

We expect subsurface conditions (after site stripping of pavements/aggregate base and other surficial materials) will largely consist of existing fill soils. In addition to following the subgrade preparation recommendations in Section 4 of this report, we recommend subgrade preparation and the aggregate base layer extend out to at least 12 inches beyond the edge of pavement or curbs to provide support for the outer edges of pavement. Where existing curbs are to remain, prepare the subgrade to the edge of the curb and protect the curb from damage/distress.

Prior to the placement of the aggregate base, we recommend fine-grading the subgrade to slope downward toward the stormwater drainage structures. Fine-grading of the underlying subgrade will be critical to minimize low spots below the aggregate base where water can pond, likely resulting in moisture changes and undesirable early pavement distress. Fine-grading the subgrade is important for the drainage of perched groundwater, and to achieve a uniform thickness of base course to be placed throughout each of the pavement sections. Also, we recommend installing underdrains at/through low spots in the prepared subgrade to facilitate the drainage of perched groundwater. See Section 5.4 for additional information.

We recommend testing the exposed subgrade for stability via a proofroll as recommended in Section 4.1.2. We recommend using a fully loaded tandem axle truck (50,000 lbs. minimum) for the proofroll test. We recommend the criteria for the proofroll be a maximum of 1/2 inch of deflection or rutting below the aggregate base layer, and a maximum 1/4 inch of deflection or rutting on the aggregate base layer. Site-specific conditions may require adjusting the proofroll criteria, which would only be considered if agreed upon in writing by the Owner and Engineer. A qualified geotechnical engineering firm must be on-site to observe the proofroll and make judgments regarding the suitability of the subgrade for pavement support.

Any loose or soft areas identified from the proofrolling will need to be recompacted in-place, undercut and replaced with additional engineered fill, or stabilized by other means as dictated by the site conditions at the time of construction. Based on the subsurface conditions encountered in the borings, we anticipate the contractor will encounter loose/soft portions of existing fill soils after making cuts to design subgrade levels. The contractor's means and methods and time of year (temperature/precipitation) will directly affect the suitability of the subgrade for pavement performance. As such, take care during subgrade

preparation to prevent water from ponding in the pavement areas and do not allow construction traffic to randomly traffic the site as this would likely result in significant disturbance to the subgrade.

We recommend including a contingency in the project budget for improving poor subgrade conditions/performing undercuts. Due to the overall poor condition of the existing fill, constructing the pavement profile over the existing fill could require the placement of a relatively thick profile of crushed stone or 1 to 3-inch sized aggregate, possibly in conjunction with a geotextile and/or geogrid layer, to "bridge over" the subgrade.

Once the subgrade passes the final proofroll test, we recommend fine-grading the subgrade again and then placing the pavement layers soon thereafter to avoid further subgrade disturbance. If subgrade disturbance occurs, we recommend the subgrade be proofrolled again to evaluate the severity of disturbance and undercuts (where required) be performed to re-establish a suitably stable subgrade. It may be necessary to use crushed stone backfill, possibly in combination with a high-strength woven geotextile fabric or geogrid, to stabilize the subgrade. A qualified geotechnical engineering firm will need to determine the type and quantity of stabilization required based on field conditions during construction.

We recommend engineered fill below the proposed pavement system (i.e. pavement and aggregate base layers) consist of a relatively clean and dense graded aggregate base material (e.g. MDOT 21AA crushed limestone), or possibly MDOT Class II sand, to facilitate drainage, and reduce time and effort during construction with subgrade preparation (e.g., discing, drying, and compaction of clay and clayey sand soils). Another option would include reusing the natural sands excavated from within the proposed building footprint as an engineered fill.

6.3 RECOMMENDED RIGID PAVEMENT SECTION

We consider the section contained herein the minimum section for the expected loading, described above. We base our recommendations on the suggested subgrade preparations and the final subgrade passing a thorough proofroll under a fully loaded tandem axle truck.

6.3.1 RECOMMENDED RIGID PAVEMENT SECTION

Utilizing the previously described design parameters and the American Association of State Highway Transportation Officials (AASHTO) "Guide for Design of Pavement Structures" 1993 edition, the following table presents the layer material and thickness recommendations for a heavy-duty rigid pavement section:

PORTLAND CEMENT CONCRETE PAVEMENT

LAYER	MATERIAL	THICKNESS (inches)
Surface	MDOT P1	8.0
Aggregate Base	MDOT Crushed Limestone	8.0

We recommend MDOT P1 concrete mix be used and modified as noted below. The coarse aggregate must meet the specifications of MDOT 6AA crushed limestone. We do not recommend gravel or slag aggregates be allowed as the coarse aggregate. We recommend performing ASTM C1567 tests on the blended materials of aggregate and cement to test the potential of Akalia Silica Reactivity (ASR). The blend needs to provide less than 0.1 percent. We recommend a mix design be submitted documenting the results of the ASTM C1567 test program. Ground granulated blast furnace slag (GGBFS) may be used as a mitigation agent for ASR at a cement replacement rate of 20 to 40 percent. The cement type will need to be Type I/II with air content specified at 5 to 8 percent. We recommend the minimum specified compressive strength of the concrete mix be 4,000 psi at 28 days.

We recommend installing the concrete at paving lane joint spacing between 12 to 15 feet wide. We recommend contraction joints be spaced between 12 and 15 feet. The length-to-width ratio of slabs must not exceed 1.25.

We recommend 1.25-inch diameter, 18-inch long smooth epoxy dowel bars spaced every 12 inches along contraction joints. We recommend tie bars be No. 5, 30-inch long epoxy-coated deformed bars spaced at 30 inches at longitudinal joints. Tie bars must not be placed within 15 inches of contraction joints, so they do not interfere with joint movement. All tie bars and dowel bars need to be epoxy coated and installed at mid depth within the slabs.

We recommend a broom finish and installing a uniform curing compound meeting the requirements of ASTM C309 Type 2 at a rate of one gallon per 225 square feet. Perform all saw cutting as soon as possible after concrete placement, without damaging the finish of the pavement. We recommend the use of soft cut saws so sawing can be performed within four hours after placement. We do not recommend traffic be allowed on the concrete until the concrete has reached at least 75 percent of the design strength. We recommend a saw cut depth of 2.5 inches. We recommend sealing all joints with hot poured rubber.

6.3.2 GENERAL PAVEMENT CONSTRUCTION COMMENTS

Proper subgrade preparation includes removing unsuitable fill and buried topsoil (if any), uniformly compacting the exposed subgrade with appropriate compaction equipment, performing proofroll tests, undercutting overly soft/loose (and/or debris/organic-laden) subgrade, and replacing undercuts with suitable engineered fill. On that basis, SME needs to assess the existing subgrade in the field at the time of construction. We recommend this occur on a case-by-case basis to address the specific needs of each situation. To address budgetary concerns, we recommend including a contingency for additional earthwork (e.g., undercutting, in-place compaction, removal of unsuitable fill, importing suitable fill, etc.) that may be required to improve subsurface conditions.

As with any pavement, cracking is inevitable particularly due to thermal changes, trapped groundwater, and frost action. Cracking will occur, and some pavement repairs are expected, before reaching the design life of the pavement. Proper drainage, protection from oversized loads, and regular maintenance can help reduce pavement distress. Routine maintenance such as crack sealing, joint sealing, and patching needs to be performed so water infiltration and frost heave effects associated with the local climate are minimized on the pavements.

6.4 DRAINAGE

The pavement system must be properly drained to reduce the possibility of frost heaving and softening of the subgrade due to water infiltrating through cracks. The infiltrated water, if not properly drained, is expected to adversely affect the long-term pavement performance. During subgrade preparation, we recommend fine-grading the existing subgrade prior to placing the aggregate base layer. This is important to 1) achieve a uniform thickness of aggregate base, and 2) direct water that may collect in the aggregate base layer toward the catch basins. We recommend a surveyor review subgrade elevations prior to aggregate base placement and assist the contractor in achieving a uniformly graded subgrade prior to aggregate base placement.

Based on typical construction, we expect the proposed pavements will be drained by an internal drainage system consisting of curb inlets and catch basins spaced throughout the system. We recommend catch basins have 20-foot long sections of underdrains installed in two directions along curb lines and four directions if they are in the open parking areas or drives to provide subsurface drainage. We also recommend re-grading surrounding areas to provide drainage away from the pavement (where practical). In areas where the surrounding grades are higher than the new pavements, we recommend installing perimeter underdrains to cut-off and/or collect groundwater that may accumulate in the aggregate base or underlying subgrade below the pavements. We recommend underdrains consist of a minimum of 1-foot wide trenches, located a minimum of 18 inches deep below the aggregate base layer. We recommend a nonwoven geotextile fabric be placed in the trench to provide separation between the peastone and the

existing subgrade. We recommend the trench be backfilled with MDOT 34R peastone. The underdrains need to consist of a 4-inch perforated, rigid, polyethylene pipe. Providing proper drainage of pavements is essential in achieving suitable long-term pavement performance. Depending upon the final site grades, additional underdrains may be required. Also, we recommend installing additional underdrains in areas as recommended by a qualified SME representative based upon observed field conditions during construction.

6.5 PAVEMENT CONSTRUCTION NOTES

- 1. Earthwork and pavement construction must be performed in accordance with the 2020 MDOT Standard Specifications for Construction unless otherwise noted in this report.
- 2. Earthwork and pavement construction is recommended during the summer months of June through September. Summer conditions are preferred to reduce the potential for disturbance of the subgrade soils due to relatively cold temperatures and precipitation.
- 3. Remove any existing pavements, base material, topsoil, organic soils, unsuitable fill and other undesirable materials to expose a suitable subgrade. Tree roots must be removed. Existing structures (if encountered) must be removed and replaced with engineered fill to within a minimum of 3 feet below the proposed pavement surface to provide a uniform subgrade.
- 4. Excavate to the depth of the final subgrade elevation to allow for grade changes and the placement of the recommended pavement system.
- 5. Undocumented fill materials are suitable for reuse if they are clean and free of frozen soil, organics, or other deleterious materials and specified compaction requirements are attainable.
- 6. The top 12 inches of the exposed subgrade as well as individual engineered fill layers shall be compacted to achieve a minimum of 95 percent of the maximum Modified Proctor dry density.
- 7. The final subgrade shall be thoroughly proofrolled using a loaded tandem axle truck under the observation of a geotechnical/pavement engineer. Remove and replace loose or yielding areas that cannot be mechanically stabilized with engineered fill or as dictated by field conditions and recommended by a geotechnical/pavement engineer.
- 8. The aggregate base shall be compacted to achieve a minimum of 95 percent of the maximum Modified Proctor dry density. The base and subgrade compaction must extend a minimum of 12 inches beyond the paved edge or back of new concrete curb. Backfill behind unsupported concrete curbs and gutters to provide lateral resistance.
- 9. Final pavement elevations shall be so designed to provide positive surface drainage. A minimum surface slope of 1.5 percent is recommended. Per the 2015 MBC, impervious surfaces within 10 feet of building foundations shall be sloped a minimum of 2 percent away from the building.
- 10. Install interceptor drains along the perimeter of paved areas where runoff from higher ground would flow towards the pavement. Finger drains must be installed at catch basins and gutter inlets.

7. SIGNATURES

PREPARED BY:

1. h. Th.

Alex Kuisell, PE Senior Project Engineer

REVIEWED BY:

Christophen Naida

Christopher G. Naida, PE Senior Consultant

APPENDIX A

FIGURE 1: BORING LOCATION DIAGRAM BORING LOG TERMINOLOGY CURRENT BORING LOGS (B1 – B11 AND IT1) PREVIOUS BORING LOGS – SME PROJECT NO. 073815.00 (B101 – B102) PREVIOUS BORING LOGS – SME PROJECT NO. 051735.00 (B1 – B8) FIGURE 2: DOUBLE RING INFILTROMETER TEST RESULTS (IT1) PRESSUREMETER TEST RESULTS (8 PLOTS)

UNIFIED SOIL CLASSIFICATION AND SYMBOL CHART										
COARSE-GRAINED SOIL (more than 50% of material is larger than No. 200 sieve size.)										
	Cle	an Grav	el (Less than 5% fines)							
		GW	Well-graded gravel; gravel-sand mixtures, little or no fines							
GRAVEL More than 50% of coarse fraction larger than		GP	Poorly-graded gravel; gravel-sand mixtures, little or no fines							
No. 4 sieve size	Grave	el with fir	nes (More than 12% fines)							
		GM	Silty gravel; gravel-sand- silt mixtures							
		GC	Clayey gravel; gravel- sand-clay mixtures							
	Cl	ean San	d (Less than 5% fines)							
		SW	Well-graded sand; sand- gravel mixtures, little or no fines							
SAND 50% or more of coarse fraction smaller than		SP	Poorly graded sand; sand-gravel mixtures, little or no fines							
No. 4 sieve size	Sand	l with fine	es (More than 12% fines)							
		SM	Silty sand; sand-silt- gravel mixtures							
		SC	Clayey sand; sand–clay- gravel mixtures							
l (50% or more of ma	FINE-GF aterial is	RAINED smaller	SOIL than No. 200 sieve size)							
SILT		ML	Inorganic silt; sandy silt or gravelly silt with slight plasticity							
AND CLAY Liquid limit less than 50%		CL	Inorganic clay of low plasticity; lean clay, sandy clay, gravelly clay							
		OL	Organic silt and organic clay of low plasticity							
		МН	Inorganic silt of high plasticity, elastic silt							
CLAY Liquid limit 50%		СН	Inorganic clay of high plasticity, fat clay							
or greater		он	Organic silt and organic clay of high plasticity							
HIGHLY ORGANIC SOIL		PT	Peat and other highly organic soil							

BORING LOG TERMINOLOGY

LABORATORY CLASSIFICATION CRITERIA										
GW	$C_U = \frac{D_{60}}{D_{10}}$ greater than 4; C_C	$= \frac{D_{30}^{2}}{D_{10} \times D_{60}}$ between 1 and 3	When la tion of s classific							
GP	Not meeting all gradation requ	irements for GW	grained							
GM	Atterberg limits below "A" line or PI less than 4	Above "A" line with PI between 4 and 7 are	 SC/0 SM/1 GC/0 							
GC	Atterberg limits above "A" line with PI greater than 7	borderline cases requiring use of dual symbols	 GM/I For soils poorly o 							
SW	$C_U = \frac{D_{60}}{D_{10}}$ greater than 6; C_C	$= \frac{D_{30}^{2}}{D_{10} \times D_{60}}$ between 1 and 3	 plastic s SP/G SC/G 							
SP	Not meeting all gradation requ	irements for SW	 Sand SM/0 							
SM	Atterberg limits below "A" line or PI less than 4	Above "A" line with PI	 Sand SW/3 GP/0 SC/3 							
SC	Atterberg limits above "A" line with PI greater than 7	borderline cases requiring use of dual symbols	 GM/ CL/N ML/O 							
Determine percentages of sand and gravel from grain-size curve. Depending on percentage of fines (fraction smaller than No. 200 sieve size), coarse-grained soils are classified as follows: Less than 5 percentGW, GP, SW, SP More than 12 percentGM, GC, SM, SC 5 to 12 percent										
Solution of the second										
• SC-	SM (SILTY CLAYEY SAND or S	SILTY CLAYEY SAND with	VS							
Gra • SM-	vel) SC (CLAYEY SILTY SAND or (CLAYEY SILTY SAND with	WS							
Gravel) • GC-GM (SILTY CLAYEY GRAVEL or SILTY CLAYEY GRAVEL with Sand)										
With		IZES	WOH WOR							
De		ather 12 inches	SP PID							
Co	bbles - 3 inch	es to 12 inches	FID							
Sa	Fine - No. 41	to 3/4 inches								
	Medium - No. 40 Fine - No. 20	0 to No. 10 0 to No. 40	Partir Sean							
Silt	t and Clay - Less th	an (0.074 mm)	Layer Strate							
	PLASTICITY C	HART	Pock Lens							
60 ()			Hard							
5) (Id) 30		СН	Mottle							
		PI=0.73 (LL-20)	Varve							
T ₹	CL	МН & ОН	Occa Frequ							
STIC			Intert							
4 10	CL-ML ML & OL									
0 L 0	0 10 20 30 40 50	60 70 80 90 100								
	LIQUID LIMIT (LL) (%)									
			Trace – Few – Little –							
			Some – Mostly –							
		CLASSIFICATION TERMINO	DLOGY AN							
Cohe	sionless Soils		Cohesive							
<u>Relati</u>	ive Density	N ₆₀ (N-Value) (Blows per foot)	Consiste							
Very L	_oose	0 to 4 5 to 10	Very Soft Soft							
Mediu	, im Dense e	11 to 30 31 to 50	Medium Stiff							
Very E Extrer	Dense mely Dense	51 to 80 Over 81	Very Stiff Hard							

VISUAL MANUAL PROCEDURE When laboratory tests are not performed to confirm the classification of soils exhibiting borderline classifications, the two possible classifications would be separated with a slash, as follows: For soils where it is difficult to distinguish if it is a coarse or finegrained soil: SC/CL (CLAYEY SAND to Sandy LEAN CLAY) SM/ML (SILTY SAND to SANDY SILT) GC/CL (CLAYEY GRAVEL to Gravelly LEAN CLAY) GM/ML (SILTY GRAVEL to Gravelly SILT) For soils where it is difficult to distinguish if it is sand or gravel, poorly or well-graded sand or gravel; silt or clay; or plastic or nonplastic silt or clay: SP/GP or SW/GW (SAND with Gravel to GRAVEL with Sand) SC/GC (CLAYEY SAND with Gravel to CLAYEY GRAVEL with Sand) SANGM (SILTY SAND with Gravel to SILTY GRAVEL with SM/GM (SILIY SAND with Gravel to SILI' Sand) SW/SP (SAND or SAND with Gravel) GP/GW (GRAVEL or GRAVEL with Sand) SC/SM (CLAYEY to SILTY SAND) GW/GC (SILTY to CLAYEY GRAVEL) CL/ML (SILTY CLAY) ML/CL (CLAYEY SILT) CH/MH (FAT CLAY to ELASTIC SILT) CL/CH (LEAN to FAT CLAY) MH/ML (ELASTIC SILT to SILT) DRILLING AND SAMPLING ABBREVIATIONS Shelby Tube – 2" O.D. Shelby Tube – 3" O.D. 2ST 3ST AS GS Auger Sample Grab Sample _ _ LS NR _ Liner Sample No Recovery PM _ Pressuremeter RC _ Rock Core diamond bit. NX size, except where noted SB Split Barrel Sample 1-3/8" I.D., 2" O.D., _ except where noted VS Vane Shear ws _ Wash Sample OTHER ABBREVIATIONS WOH Weight of Hammer WOR _ Weight of Rods Soil Probe SP PID _ Photo Ionization Device FID Flame Ionization Device DEPOSITIONAL FEATURES as much as 1/16 inch thick Parting 1/16 inch to 1/2 inch thick 1/2 inch to 12 inches thick Seam _ Layer greater than 12 inches thick Stratum Pocket deposit of limited lateral extent Lens _ lenticular deposit an unstratified, consolidated or cemented Hardpan/Till mixture of clay, silt, sand and/or gravel, the size/shape of the constituents vary widely Lacustrine _ soil deposited by lake water soil irregularly marked with spots of different Mottled _ colors that vary in number and size Varved - alternating partings or seams of silt and/or clav Occasional one or less per foot of thickness _ more than one per foot of thickness strata of soil or beds of rock lying between or Frequent Interbedded alternating with other strata of a different nature DESCRIPTION OF RELATIVE QUANTITIES The visual-manual procedure uses the following terms to describe the relative quantities of notable foreign materials, gravel, sand or fines: Trace – particles are present but estimated to be less than 5% Few – 5 to 10% Little – 15 to 25% Some - 30 to 45% Mostly - 50 to 100% LOGY AND CORRELATIONS **Cohesive Soils** Undrained Shear Strength (kips/ft²) N₆₀ (N-Value) Consistency (Blows per foot) 0.25 or less Verv Soft <2 2 - 4 > 0.25 to 0.50 Soft

5 - 8 9 - 15

16 - 30

> 30

> 0.50 to 1.0 > 1.0 to 2.0

> 20 to 40

> 4.0 or greater

Standard Penetration 'N-Value' = Blows per foot of a 140-pound hammer falling 30 inches on a 2-inch O.D. split barrel sampler, except where noted. N60 values as reported on boring logs represent raw N-values corrected for hammer efficiency only.

PROJI	ECTI	NAME	350 South Fi	fth Avenue Re	developm	ent			PR	OJE	CT N	UMBER	R: 08	8486	68.01	1				BOI	RING	PAC DEPTI)E 1 OF H: 16 FEE
CLIEN	IT: S	SmithG	iroup						PR	OJE	CTL	OCATIO	ON:	Ann	Arb	or, M	ichię	gan					
DATE	STA	RTED:	1/11/23	COM	PLETED:	1/11/	23		BC	RING	6 ME	THOD:	Hol	low-	sterr	ו Aug	ers						
DRILL	ER:	JR		RIG N	O .: 552	(CME	55)			GGE	DB	Y: EJK	(, 	CHE	CKE	ED B	S Y: A	K	
(FEEI)	ET)						ON	HES)	Ш	HAN	MER		90	ORY E (pc1 0 100	DENS	ITY 120		Hand Torva Unc. (PENE.	HEAR			
ELEVATION	DEPTH (FE B	SYMBOLIC PROFILE	Northing: 284249 Easting: 132910 Elevation: 847.3 F Pro	9.975 FT 104.84 FT T FILE DESCRIPTIO	N		SAMPLE TYPE/ INTERVAL	RECOVERY LENGTH (INCH	SPT BLOWS P SIX INCHES		E: 9/2	30 40	F 10	MOIS ATTE LIMI PL I	TURE RBEF TS (% MC 30	8 RG 5) ⊥⊥ − 1 40	• × •	VANE VANE TRIAXI SH TREN	SHEAF SHEAF AL (UU IEAR GTH (3	R (PK) R (REM J) K (KSF))	RE	MARKS
	-0-		.3 4 Inches of	PAVEMENT-	See Note	847.0- /					:					:							
345	-		FILL- Mix c Concrete D	f Sand, Gravel)ebris- Gray	and	/ 844.3	SB1	10	6 9 7		22 0 1					•							
	- 5		FILL- Fine Silt- Brown (SP-SM)	to Medium SAI - Moist- Mediu	ND with m Dense		SB2	16	5 6 8		1 19 0										_		
40	-		FILL- Mix of Concrete D	f Sand, Gravel)ebris- Trace B	& rick	841.3	SB3	12	8 8 10		1 25 2	5				•				•••••••••••••••••••••••••••••••••••••••			
	-					039.3	SB4	6	6 4 3	10/ ()						•							
35	- 10		FILL- Fine Gravel- Tra Concrete F Moist- Loos	to Coarse SAN ace Plastic, Gla ragments- Bro se (SP)	D with ss, and wn-				2														
	- 15 –		6.0			831.3	SB5	3	33	8 0		· · ·									_		
			END OF B	ORING AT 16.) FEET.				Į	:	:	· · ·		:	:	:			:	:			
.30	-															•							
	20 -											· · · · · · · · · · · · · · · · · · ·											
25	-															•							
	25 -											· · · · · · · · · · · · · · · · · · ·											
20	-										•				•	•			•••••••••••••••••••••••••••••••••••••••	•			
	— 30—											· · ·											
G	ROUN	DWATER	& BACKFILL INFOR	RMATION	NOTES:	1. The	e indica	ted st	ratifica	tion li	nes a	re appro	ximat	ie. T	he in	-situ l	trans	ition	s bet	weer	n mate	rials ma	ay be gradu
GROI	JNDV	/ater	WAS NOT ENCO D: Auger Cuttings & Plug & Asphalt (OUNTERED & EPCO Hole Cold Patch		2. 1 ne rep 3. Pav 4. Dril bef 5. Bor	vement ler enc ore resi	appea appea ounter uming eleval	ared on ared to red an sampl tions p	une s lors e consi unkno ing. S rovide	ncou st of wn o ee bo	ntered. cemente bstructio oring log SmithGr	e are ed gra on at 1 B 1B roup.	vel. 16.0 f	eet, i	then o	offsei	t the	borir	ses a ng an	d blinc	drilled	to 13.5 fee

	CTN : S TAF	MAME mith(RTED	: 350 Se Group : 1/11/2	outh Fifth Aver	COMPLETE	pment D: 1/11/ 52 (CME	23		PR PR BC	OJECT NUMBER: 0844 OJECT LOCATION: Ar RING METHOD: Hollov GGED BY: F.1K	868.01 nn Arbor, M v-stem Aug	BORI ichigan ers CHECKED BY	PAGE 1 OF 2 NG DEPTH: 50 FEET
	OEPTH (FEET)	PROFILE	NORTHING: EASTING: ELEVATION	284255.67 FT 13291007.91 FT 847.5 FT PROFILE DES			SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ O 10 20 30 40 10	(DENSITY ocf) ■ 100 110 120 ISTURE & ISTURE &	 ♥ HAND PENE. ♥ TORVANE SHEAR ● UNC. COMP. ● VANE SHEAR (PK) × VANE SHEAR (REM) ♦ TRIAXIAL (UU) SHEAR STREARGTH (KSF) 1 2 3 4 	REMARKS
45			BLI	ND DRILL	IEN I - See No	te 847.3							
35			13.5 FILI Silt Frag 17.0	Fine to Mediu & Gravel- Trace gments- Brown-	um SAND with e Brick - Moist (SP-SN	834.0 /) 830.5	SB5	6	15 27 30	78 D			Blow counts likely influenced by debris.
25	20		Fine Occ Moi (SP	e to Coarse SAN asional Cobble st- Medium Der)	ND with Grave s- Brown- nse to Dense	ŀ	SB6 SB7	16	10 11 11 13 15 16	30			
20			27.0 Fine Bro	e to Coarse SAN wn- Moist- Very	ND with Grave Dense (SP)	820.5	SB8	15	20 21 20	56 D			
GRC Z DURII Z AT EN ACKFIL	NG E ND O	WATE BORIN OF BO	R & BACKFI G: RING: D: Auger Plug &	LL INFORMATION DEPTH (FT) ELEX 43.0 80 43.0 80 Cuttings & EPCO H Asphalt Cold Patch	NOT 04.5 04.5 04e	ES: 1. The 2. The rep 3. Pav 4. Bor 5. Bor	e indica e colors resent f vement ring was ring log	ted str depic the in- appea s offse elevat	ratifica ted on situ co ired to t from ions pi	ion lines are approximate. the symbolic profile are so lors encountered. consist of cemented gravel boring B 1A. rovided by SmithGroup.	The in-situ lely for visua	transitions between n lization purposes and	naterials may be gradua I do not necessarily

BORING B 1B

PAGE 2 OF 2 BORING DEPTH: 50 FEET

-

13	CLIENT:	SmithGroup
<u> </u>		•

- 780

CLIENT:	Smith	: 350 South Fifth Avenue Redevelopment Group			PR PR	OJECT NUMBER:	: 084868.01 N: Ann Arbor. Mi	chigan	
ELEVATION (FEET)	SYMBOLIC PROFILE	NORTHING: 284255.67 FT EASTING: 13291007.91 FT ELEVATION: 847.5 FT PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₈₀ O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ✓ HAND PENE. ☑ TORVANE SHEAR ● UNC. COMP. ☑ VANE SHEAR (PK) × VANE SHEAR (REM) ♦ TRIXAIA (UU) SHEAR STRENGTH (KSF) 1 2 3 	REMARKS
	0 - - - - - - - - - - - - - - - - - - -	Fine to Coarse SAND with Gravel- Brown- Moist- Very Dense (SP) (continued)	SB9	16	24 26 27	7	2		
-810 - - - - - 805 <u>v</u>	- - - - - - - -	Fine to Medium SAND with Gravel- Brown- Moist to Wet- Very Dense (SP)	SB10	13	23 20 22	5	7 D		
- - 4 - - 800 -	5	44.5 80 Fine SILTY SAND- Brown- Wet- Dense to Very Dense (SM)	3.0 SB11	13	15 14 16 13 17	41			
	0	END OF BORING AT 50.0 FEET.			20				
- - 790 - - 6	- - - 0 -								
- - 785 - - 6 -									

(9 5	51	M	E									E	PAGE 1 OF 2
PF	ROJE	СТІ	NAME	: 35	0 South Fifth A	venue Red	evelopme	ent			PR	OJECT NUMBER:	084868.01	BORI	NG DEPTH: 50 FEET
CL	.IENT	r: s	Smith	Group	0.100						PR		N: Ann Arbor, M	ichigan	
		STA R·	.IR	: 1/1	0/23		ETED:	1/10/	23 55)		L C	GGED BY E.IK	Hollow-stem Aug	ers CHECKED BY	AK
													DRY DENSITY		7.4.2
ELEVATION (FEET		ELEVATION: 848 FT PROFILE DESCRIPTION						SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ - O	00 100 110 120 00 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 20 40	 ► INAND PENE. ■ TORVANE SHEAR ■ UANE SHEAR (PK) ➤ VANE SHEAR (REM) ◆ TRIAXIAL (UU) STRENGTH (KSF) 	REMARKS	
		-0-		q .3	3 Inches of PAV	EMENT- S	ee Note	847.8 [.] /				10 20 30 40			
- - 84	5	-		3.0	FILL- Mix of Sar Concrete Debris	nd, Gravel 8 5- Gray	L	845.0	SB1	12	10 11 14	34			
-		- 5-			FILL- Fine to Me Silt- Brown- Moi (SP-SM)	edium SANI st- Medium	D with Dense		SB2	16	7 8 7	21/			
-		-		6.0				842.0	SB3	6	10 8 17	134 Q			Blow counts likely
- 84	0	- - 10 -			FILL- Fine to Coarse SAND with Gravel- Few Concrete, Brick, and Metal Fragments- Brown- Moist (SP)					8	7 10 50/2"	82 0 0	+		Blow counts likely influenced by debris.
		-		12.0				836.0							,
- 83 -	5	- - 15 -							SB5	14	16 12 13	7 7 34 0			
- 83	0	-			Fine to Coarse S Brown- Moist- D	SAND with ense (SP)	Gravel-								
		- 20 —							SB6	16	12 11 12	31			
- 82	5	-		22.0				826.0							
		- 25 — -			Fine to Coarse SAND with Silt & Gravel- Brown- Moist- Dense (SP-SM)					4	12 12 14	36			
- 82	0	-		27.0	Fine to Coarse S Brown- Moist- V	SAND with ery Dense f	Gravel- o	821.0			21		8		
		-30							SB8	13	24 26	<u></u>	5 : : : :		
GROUNDWATER & BACKFILL INFORMATION DEPTH (FT) ELEV (FT) ✓ DURING BORING: 43.0 805.0 ✓ AT END OF BORING: 43.0 805.0						e indica e colors resent l /ement l boring ographi	ted str depic the in- appea eleva c data	atifica ted on situ co red to tion wa	tion lines are approxi the symbolic profile lors encountered. consist of cemented as not provided, and t	imate. The in-situ t are solely for visua gravel. was estimated by S	ransitions between n lization purposes and SME to the nearest 0.	naterials may be gradual. I do not necessarily 5-foot using provided			
BA	CKFI	LL M	IETHC	DD: A	Nuger Cuttings & EPC Plug & Asphalt Cold Pa	O Hole atch									

PAGE 2 OF 2 BORING DEPTH: 50 FEET

PROJECT NAME: 350 South Fifth Avenue Redevelopment

PROJECT NUMBER: 084868.01

2	CLIENT:	SmithGroup
- 1		•

CLIEN	T: \$	Smith	Group			PR	OJECT LOCATIO	N: Ann Arbor, Mi	chigan	
ELEVATION (FEET)	ОЕРТН (FEET)	SYMBOLIC PROFILE	ELEVATION: 848 FT PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₈₀ O	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL ■ 0 20 30 40	 ▼ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
- 815	—30— - - - 35 –		Fine to Coarse SAND with Gravel- Brown- Moist- Very Dense to Dense (SP) <i>(continued)</i>	SB9	12	18 17 18	48			
- 810 - - -	- - 40 -		37.0 811. Fine to Medium SAND- Brown- Moist- Dense (SP)	SB10	15	11 12 16	38 9 9 1 1 1 1 1 1			
- 805 🔽 - - - - - 800 -	45 - - - -		43.0 805. Fine to Coarse SAND with Silt & Gravel- Brown- Wet- Medium Dense (SP-SM)	SB11	9	8 10 11	29			
- - - 795 - -	—50— - - - 55 -		50.0 798. END OF BORING AT 50.0 FEET.			12				
- - 790 - -	- - 60 – -									
- 785 - - - - 780 -	- 65 - - - -									

PROJE	CT N/	AME: nithGro	350 South Fifth	n Avenue Redeve	lopment			PR PR	OJECT NUMBE	R: 084	868.01 nn Arbor,	Michiga	n	201	
	STAR	TED: IR	1/9/23	COMPLET RIG NO.:	ED: 1/10 552 (CME)/23 55)		BO LO	RING METHOD GGED BY: EJI	: Hollo K	w-stem A	ugers C	HECKE	D BY	: AK
	DEPTH (FEET)	NOI BAS BAS BLIC COMPOSITION C	RTHING: 284222.2 STING: 13291001 VATION: 847.5 FT PROFI I	5 FT .25 FT .E DESCRIPTION		SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ O 10 20 30 40	DR 90 AT L PL 10	Y DENSITY (pcf) ■ 100 110 121 DISTURE & TERBERG IMITS (%) MC LL 20 30 40		AND PENE. DRVANE SH NC. COMP. ANE SHEAF RIAXIAL (UU SHEAR SHEAR EENGTH 2 3	HEAR R (PK) R (REM) I) KSF)	REMARKS
145	5	6.3 3.0 8.0	3 Inches of F 3 FILL- Mix of 3 Concrete De FILL- Fine to Silt- Few Brid Concrete Fra (SP-SM) END OF BO	AVEMENT- See N Sand, Gravel, and oris- Gray Medium SAND wi k, Wood, and gments- Brown- N RING AT 8.0 FEE	lote 847. / 	3- 55 5882 55 5	16 18 6	10 10 9 12 13 15 15 18 25	26	59					Blow counts likely influenced by debris. Blow counts likely influenced by debris.
35 30 25	10														
20 GROUI	-30 OUNDV NDW A	VATER & TER W THOD:	BACKFILL INFORM AS NOT ENCOL Auger Cuttings & B Plug & Asphalt Co	IATION NO JNTERED SPCO Hole d Patch	DTES: 1. TH 2. TH 3. Pa 4. DH 5. Bo	ne indica ne colors present t avement iller enco fore reso pring log	ted sta depic the in- appea ounter uming elevat	ratificat sted on situ co ared to red an sampl tions pr	tion lines are appr the symbolic prof lors encountered. consist of cement unknown obstructi ing. See boring lo rovided by SmithG	oximate. ile are so ed grave on at 8.0 g B 3B. roup.	The in-si lely for vis I.) feet, then	tu transiti ualizatio offset th	ions bet n purpos e boring	ween r ses and	naterials may be gradu d do not necessarily lind drilled to 8.0 feet

:03:18 PM	0) 5	16	ME									BC	PAGE 1 OF 2
2 02/0	PROJE	СТІ	AME	: 350 So	uth Fifth Avenu	e Redevelopme	ent			PR	OJECT NUMBER:	084868.01	DURI	NG DEPTH. 30 FEET
		T: 8	Smith(Group			1/10/	<u></u>		PR		I: Ann Arbor, M	ichigan	
	DRILLI	ER:	JR	. 1/9/23	R	IG NO.: 552 ((CME :	23 55)		LO	GGED BY: EJK	Tonow-Stern Aug	CHECKED BY:	AK
	ELEVATION (FEET)	о DEPTH (FEET)	SYMBOLIC PROFILE	U NORTHING: 284217.786 FT EASTING: 13291003.34 FT ELEVATION: 847.6 FT PROFILE DESCRIPTION				SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ O	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ♥ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (RFK) > X VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
	- 845	- - 5-		BLIN	ID DRILL									
	840	- - 10 -		8.0 FILL Silt- and Mois 12.0	- Fine to Medium Few Brick, Wood Metal Fragments t- Medium Dens	a SAND with d, Concrete, ⊱ Brown- e (SP-SM)	839.6 835.6	SB4	8	8 7 8	21 Q			
-	920	- 15 - -		Fine Brov	to Coarse SANE m- Moist- Very D) with Gravel- ense (SP)	830.6	SB5	12	19 23 18				
	- 825	- 20 - - -		Fine Grav Den:	to Coarse SANE rel- Brown- Moist se (SP-SM)) with Silt & - Medium		SB6	6	6 9 10 7				
-	-820	25 - 27.0 82 Fine to Coarse SAND with Gravel-						SB7	16	78				
	Brown- Moist- Dense (SP)								8	10 13 12	34 			
ORCONDWATER & BACKFILL INFORMATION NOTES: 1. The indication DEPTH (FT) ELEV (FT) ✓ DURING BORING: 43.0 804.6 ✓ AT END OF BORING: 43.0 804.6 ✓ AT END OF BORING: 43.0 804.6 Ø BACKFILL METHOD: Auger Cuttings & EPCO Hole 9 Plug & Asphalt Cold Patch Plug & Asphalt Cold Patch 1000000000000000000000000000000000000						e indica colors resent t rement ing was ing log	ted str depic he in- appea offse elevat	atifica ted on situ co red to t from ions p	tion lines are approxin the symbolic profile a lors encountered. consist of cemented o boring B 3A. rovided by SmithGrou	nate. The in-situ f are solely for visua gravel. p.	transitions between m lization purposes and	aterials may be gradual. do not necessarily		

BORING B 3B

PAGE 2 OF 2 BORING DEPTH: 50 FEET

13	CLIENT:	SmithGroup
~		

- 780

PROJEC	T N	AME	: 350 South Fifth Avenue Redevelopment			PR	OJECT NUMBER:	084868.01		
CLIENT:	S	mith	Group			PR	OJECT LOCATION	N: Ann Arbor, Mi	ichigan	
ELEVATION (FEET)	S DEPTH (FEET)	SYMBOLIC PROFILE	NORTHING: 284217.786 FT EASTING: 13291003.34 FT ELEVATION: 847.6 FT PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ - O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	▼ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRIAXUA (UU) SHEAR STRENGTH (KSF) 1 2 3 4	REMARKS
- 			Fine to Coarse SAND with Gravel- Brown- Moist- Dense (SP) (continued)	SB9	14	13 13 16	40 			
- 810 - - - - 805	 - 40 - -		37.0 010,0	SB10	12	20 18 21		8		
- - - - - - 800	 45 		Fine to Medium SAND- Brown- Moist to Wet- Very Dense to Dense (SP)	SB11	16	12 14 15				
-	+		50.0 797.6	SB12	18	18 17 22	53	3		
	50 - - - - 55 - -		END OF BORING AT 50.0 FEET.							
- 790	-									
- - 6 - - 785	- 60 - - -									
- - (1) -	- 65 - -									

ATE	STA	RTED	1/9/23	COM	PLETED	: 1/9/2	3		BC	RING METHOD:	Hollow-stem Aug	ers	
RILL	ER:	JR		RIG I	NO.: 55	2 (CME	55)		LO	GGED BY: EJK		CHECKED BY:	AK
	DEPTH (FEET)	SYMBOLIC PROFILE	NORTHING: EASTING: ELEVATION:	284216.702 FT 13291059.65 FT 848.6 FT PROFILE DESCRIPTI	DN		SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ♥ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ♦ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
	-		4.3 4 Inc 3 FILL 2.0 Con	- Mix of Sand, Grave crete Debris- Gray	see Note	848.3 846.6	SB1	10	8 7 16	31			Blow counts likely influenced by debris.
45	- 5 -		FILL Bric Mois	Fine to Medium SA k & Wood Fragments st (SP)	ND- Few S- Brown-		SB2	16	25 17 17 25	46			Blow counts likely influenced by debris.
	-		8.0			840.6	SB3	9	25 31	\square			Blow counts likely influenced by debris.
40	- 10 - -		FILL Silt- Brov (SP-	Fine to Medium SA Trace Brick Fragmer wn- Moist- Medium D -SM)	ND with nts- lense	837.6	SB4	6	3 4 4				
35	- - 15 - -						SB5	6	10 9 10	26 26			
80	- - 20 -		Fine Brov Very	e to Coarse SAND wit wn- Moist- Medium D / Dense (SP)	th Gravel- lense to		SB6	14	9 12 16	38			
25	- - 25 -		07.0			924.6	SB7	10	16 18 19				
20	- - 		Fine Mois	e to Medium SAND- E st- Medium Dense (S	Brown- P)	621.0	SB8	16	9 10 12	7 7 30∕ ♀			
G 2 DUI 2 AT	ROUNI RING END (BORIN DF BO	R & BACKFII NG: RING:	DEPTH (FT) ELEV (FT) 43.0 805.6 43.0 805.6	NOTE	S: 1. The 2. The rep 3. Pav 4. Bor	e indica e colors resent f /ement ing log	ted str depic the in- appea elevat	ratifica sted on situ co ared to tions p	tion lines are approxin the symbolic profile a lors encountered. consist of cemented rovided by SmithGrou	nate. The in-situ are solely for visua gravel. p.	transitions between m lization purposes and	naterials may be gradu. I do not necessarily

		5	ME						Ľ	PAGE 2 OF 2
	OJECT	NAM	E: 350 South Fifth Avenue Redevelopment			PR	OJECT NUMBER	084868.01	BORI	NG DEPTH: 50 FEET
	ENT:	Smith	nGroup			PR	OJECT LOCATIO	N: Ann Arbor, Mi	chigan	
ELEVATION (FEET)	© DEPTH (FEET)	SYMBOLIC PROFILE	NORTHING: 284216.702 FT EASTING: 13291059.65 FT ELEVATION: 848.6 FT PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ - O <u>10 20 30 40</u>	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ▼ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
- - - 815 - -	35 -		31.0 817.6 Fine to Coarse SAND with Gravel- Brown- Moist- Medium Dense (SP) 37.0 811.6	SB9	16	9 9 9	25			
- - 810 - -	40 -		Fine to Medium SAND- Brown- Moist- Dense (SP)	SB10	18	11 14 12	36 36 1			
- 805 - - -	45 ·		Fine to Coarse SAND with Gravel- Brown- Wet- Medium Dense to Dense (SP)	SB11	13	9 9 11				
- 800		-	50.0 798.6	SB12	15	13 14 16	41 O			
- - - 795 -		-	END OF BORING AT 50.0 FEET.							
- 790 - -	60 -	-								
- - 785 - - -	65 ·	-								
- - 780 -	70	-								

(9	51	ME								BORII	PAGE 1 OF 2 NG DEPTH: 50 FEET
PRO			E: 350 S	South Fifth Avenue Re	edevelopment			PR	OJECT NUMBER	: 084868.01	lichigan	
DATE	E STA	RTED): 1/9/2:	3 COM	PLETED: 1/9/	23		BC	ORING METHOD:	Hollow-stem Auc	iers	
DRIL	LER:	JR		RIG	IO.: 552 (CME	E 55)		LC	GGED BY: EJK		CHECKED BY:	AK
ELEVATION (FEET)	о осртн (FEET)	SYMBOLIC PROFILE	NORTHING EASTING: ELEVATIOI	5: 284211.876 FT 13291130.34 FT N: 849.9 FT PROFILE DESCRIPTIC	N	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ - O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ▼ HAND PENE. ▲ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
-	-		6.3 31 3 FIL Co 3.0	nches of PAVEMENT- L- Mix of Sand, Grave ncrete Debris- Gray	See Note 849. / , and 846.	7- SB1	10	7 8 11	26 			
- - 845 -	- 5-		FIL Sil	L- Fine to Medium SA t- Brown- Moist- Dense	ND with (SP-SM)	SB2	16	12 12 11	31			
-	-		7.0 _{8.0} FIL	L- Concrete Debris	<u>842.</u> 841.	9 SB3	9	10 37				
- 840 -	- - 10		FIL Gr Fra (SI 12.0	LL- Fine to Coarse SAN avel- Trace Brick & Co agments- Brown- Moist P)	ID with ncrete - Loose 837.	SB4	6	3 4				
- - - 835 - -	- - 15 - - -					SB5	14	5 7 8	21			
- - - 830 - -	- - 20 - -		Fir Bra Ve	ne to Coarse SAND wit own- Moist- Medium D ry Dense (SP)	n Gravel- ense to	SB6	11	11 19 20		33 D		
- - 825 - -	- 25 - -					SB7	9	12 15 14				
- - =.820	- - 					SB8	14	16 18 15				
U V DL V AT BACK	Groun Jring End Fill N	BORII DF BC	ER & BACKI NG: DRING: DD: Auge Plug	FILL INFORMATION DEPTH (FT) ELEV (FT) 44.5 805.4 46.0 803.9 er Cuttings & EPCO Hole & Asphalt Cold Patch	NOTES: 1. TI 2. TI 7 3. Pc 4. Bo	ne indica ne colors present avement oring log	ated st s depic the in- appea eleva	ratifica cted on situ cc ared to tions p	tion lines are approx the symbolic profile lors encountered. consist of cementer rovided by SmithGro	kimate. The in-situ ⊧ are solely for visua d gravel. oup.	transitions between n lization purposes and	naterials may be gradual. I do not necessarily

PAGE 2 OF 2 BORING DEPTH: 50 FEET

PROJECT NAME: 350 South Fifth Avenue Redevelopment

PROJECT NUMBER: 084868.01

PROJECT LOCATION: Ann Arbor, Michigan

CLIENT: SmithGroup

ELEVATION (FEET)	одертн (FEET)	SYMBOLIC PROFILE	NORTHING: 284211.876 FT EASTING: 13291130.34 FT ELEVATION: 849.9 FT PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ♥ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) ♥ VANE SHEAR (REM) ♥ TRIAXIAL (UU) SHEAR \$TRENGTH (KSF) 1 2 3 4 	REMARKS
- - - - 815 -	- - - 35 -		Fine to Coarse SAND with Gravel- Brown- Moist- Medium Dense to Very Dense (SP) <i>(continued)</i> 37.0	SB9 812.9	18	18 20 20	5	55 D		
- - 810 -	- - 40 -		Fine to Coarse SAND with Gravel- Occasional Cobbles- Brown- Moist- Extremely Dense (SP) 42.0	SB10 807.9	10	32 35 41	1	04 D		
- - 805 - -	- 45 - - -		Fine to Coarse SAND with Gravel- Brown- Moist to Wet- Dense to Medium Dense (SP)	SB11	13	11 11 14				
-			50.0	SB12	16	9 8 10	25 O			
-	-		END OF BORING AT 50.0 FEET.							
- 795 - - -	55 - - - -									
- 790 - -	- 60 - - -									
- - 785 - -	- 65 - - -									
_780										

) 5 ст і		South Fifth A	venue Redevelopr	nent			PR	OJECT NUMBER:	: 084868.01	BORII	PAGE 1 OF 2 NG DEPTH: 50 FEET
CL	IENT	r: s	Smith	Group					PR	OJECT LOCATIO	N: Ann Arbor, M	lichigan	
DA	TE S	STA	RTED	: 1/4/23	COMPLETED	1/4/2	3		BC	RING METHOD:	Hollow-stem Aug	ers	
DF	RILLE	R:	JR		RIG NO.: 552	2 (CME	55)		LO	GGED BY: EJK		CHECKED BY:	AK
ELEVATION (FEET)		осертн (FEET)	SYMBOLIC PROFILE	NORTHING: 284217.643 EASTING: 13291216.64 ELEVATION: 852.2 FT PROFILE I	-T FT Description		SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₈₀ O 10 20 30 40	DRY DENSITY (pcf) - ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL ■ 10 20 30 40	 ▼ HAND PENE. ▼ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
-			×××	0.7 8 Inches of PA\	/EMENT- See Note	851 <u>.5</u> 7							
- - 850 -)	-		FILL- Mix of Sa Concrete Debri	nd, Gravel, and s- Gray	849.2	SB1	12	8 7 8	21 〇 ノ			
-		- 5 -		FILL- Sandy LE Gravel- Brown-	AN CLAY with Very Stiff (CL)	846 2	SB2	16	5 4 4		16		
- - 84	5	-		FILL- Fine to Co Gravel- Few Co Gray- Moist- Me	parse SAND with ncrete Fragments- edium Dense (SP)	010.2	SB3	13	7 8 12				
-		- 10 –	***	9.0		843.2	SB4	14	6 7 9				
- - 84(- -)	- - - 15 –					SB5	16	8 7 8	21			
- 83: - - -	5	- - 20 – -		Fine to Coarse Brown- Moist- N Dense (SP)	SAND with Gravel- ledium Dense to		SB6	14	11 10 16				
- 83(- -)	- - 25 –					SB7	10	12 14 12	36 			
- - 82! -	5	-					SB8	16	16 11 10	29 Q			
		-30								• 1			
G	gr Rout	NDW	ATE	R & BACKFILL INFORMAT R WAS NOT ENCOUN DD: Auger Cuttings & EPC Plug & Asphalt Cold P	ION NOTE: TERED IO Hole atch	S: 1. The 2. The rep 3. Pav 4. Bor	e indica e colors resent t vement ing log	ted str depic the in- appea elevat	ratificat ted on situ co red to ions pi	tion lines are approx the symbolic profile lors encountered. consist of cemented rovided by SmithGro	imate. The in-situ are solely for visua I gravel. up.	transitions between m lization purposes and	aterials may be gradual. do not necessarily

		31	ME						BOR	PAGE 2 OF 2
PRO	JECT	NAM	E: 350 South Fifth Avenue Redevelopment			PR		: 084868.01		
ATION (FEET)	H (FEET)		NORTHING: 284217.643 FT	E TYPE/NO. AL	ERY H (INCHES)	OWS PER	HAMMER EFFICIENCY: 82% DATE: 9/29/2022	N: Ann Arbor, M DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%)	 Ichigan ▼ HAND PENE. I TORVANE SHEAR ● UNC. COMP. ○ VANE SHEAR (PK) × VANE SHEAR (REM) 	
ELEV,	DEPT	SYMB PROF	EASTING: 13291216.64 FT ELEVATION: 852.2 FT PROFILE DESCRIPTION	SAMPLI	RECOV	SPT BL SIX INC	10 20 30 40	PL MC LL 10 20 30 40	SHEAR STRENGTH (KSF)	REMARKS
- - - 820 -	30		31.0 821.2			23				
- - - - 815	35 -		Fine to Coarse SAND with Gravel- Brown- Moist- Very Dense (SP)	SB9	13	22 23				
-	40 -		42.0 810.2	SB10	18	22 25 25		8 D		
- 810 - - -	45 -		Fine to Medium SAND- Brown- Moist- Very Dense (SP) 46.0 806.2	SB11	14	17 24 28		1 D		
- 805 - -			Fine to Medium SAND with Gravel- Brown- Moist- Dense (SP)	SB12	16	21 17 19	4	9		
- - 800 -		-	END OF BORING AT 50.0 FEET.							
- - - -795	55 -	-								
-	60 -	-								
- 790 - -		-								
- - - 785 -	65 -	-								l
-		-								

CLIEN	IT: S	Smith	Group		astophie				PR	OJECT LOCATIO	N: Ann Arbor, N	lichigan	
DATE	STA	RTED): 1/5/23	COMF	LETED: 1	1/5/23	3		BC	RING METHOD:	Hollow-stem Aug	gers	
DRILL	ER:	JR		RIG N	0 .: 552 (C	CME :	55)		LC	GGED BY: EJK		CHECKED BY:	AK
ELEVATION (FEET)	DEPTH (FEET)	SYMBOLIC PROFILE	NORTHING: EASTING: ELEVATION:	284158.023 FT 13291009.75 FT 848.3 FT PROFILE DESCRIPTIO	N	0.17.0	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₈₀ O 10 20 30 40	DRY DENSITY (pcf) → ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LI 10 20 30 40	 ♥ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ♦ TRAXIAL (UU) SHEAR STREARS STRENGTH (KSF) 1 2 3 4 	REMARKS
845	-		0.5 6 Inc 3 FILL- Conc 3.0	Mix of Sand, Gravel, rete Debris- Gray	and	847.8 	SB1	16	4 5 5 4	14 0 1 1 10			
	5-		6.0 FILL- 6.0 FILL- Conc & Wo 8.0 (SP)	Fine to Coarse SAN Fine to Coarse SAN rete Fragments- Trac pod Fragments- Brow	D with SP-SM) D- Few e Brick n- Moist	842.3 840.3	SB2	9	5 2 6 12 11	Q , , , , , , , , ,			- Blow counts likely influenced by debris.
40	- 10 — -		<u>(or)</u>				NR4	o	4 4 3				[–] No recovery at sample SB4.
35	- - 15 –		FILL- Silt 8 to Me	Fine to Coarse SAN Gravel- Brown- Mois adium Dense (SP-SM	D with .t- Loose)	-	SB5	6	7 3 6	1 1 12 0			
30	- - 20 –	~~~	17.0 Fine Brow 21.0	to Coarse SAND with n- Moist- Medium De	Gravel- nse (SP)	<u>831.3</u> 827.3	SB6	13	9 8 10	25			
25	- - - 25 -		Fine Sanc Mois	to Coarse SAND- Fe stone Fragments- Br - Dense (SP)	v own-	-	SB7	16	14 13 16	40 0			
20	- - 		27.0 Fine Brow Dens	to Coarse SAND with n- Moist- Dense to Ve e (SP)	Gravel- ery	821.3	SB8	14	12 12 15	37			
G Z DU Z DU	ROUNI RING END (R & BACKFIL	INFORMATION DEPTH (FT) ELEV (FT) 42.0 806.3 43.0 805.3	NOTES: 1 2 3 4	1. The 2. The repr 3. Pav 4. Bori	e indica colors resent f ement ing log	ted sta depic the in- appea eleva	ratifica cted on situ co ared to tions p	tion lines are approxi the symbolic profile lors encountered. consist of cemented rovided by SmithGrou	imate. The in-situ are solely for visua gravel. up.	transitions between n Ilization purposes and	naterials may be gradua I do not necessarily

03:23 P) 5	51	ME							PAGE 2 OF 2
23 2:	PROJI	ECT	NAMI	E: 350 South Fifth Avenue Redevelopment			PR	OJECT NUMBER:	084868.01	BORI	NG DEPTH: 50 FEET
11/3/:	CLIEN	т: з	Smith	Group			PR	OJECT LOCATIO	N: Ann Arbor, M	ichigan	
	ELEVATION (FEET)	8 0 ДЕРТН (FEET)	SYMBOLIC PROFILE	NORTHING: 284158.023 FT EASTING: 13291009.75 FT ELEVATION: 848.3 FT PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ♥ HAND PENE. ♥ TORVANE SHEAR ● UNC. COMP. ● VANE SHEAR (PK) × VANE SHEAR (REM) ♦ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
	-815	- - - 35 -		Fine to Coarse SAND with Gravel- Brown- Moist- Dense to Very Dense (SP) <i>(continued)</i>	SB9	15	20 26 28		4		
	- 810	- 40 -		39.0 809.3 Fine to Medium SAND- Brown- Moist to Wet- Medium Dense (SP)	SB10	10	16 10 11	28/			
-	-805	- - 45 -		Fine to Medium SAND with Silt- Brown- Wet- Dense (SP-SM)	SB11	16	15 15 16	42			
	- 800	- - - 50-		Fine SILTY SAND- Brown- Wet- Dense (SM)	SB12		12 15 17	 44			
-	- 795	-	-	END OF BORING AT 50.0 FEET.							
	- 790	- 55 - - -	-								
	- 785	60 - - - -									
	- 780	65 - - -	-								
┝			1								

⋝

BORING B 7

ATE	STA	RTE	: 1/11/23	COMPLETE	D: 1/11/	23		BC	RING METHOD:	Hollow-stem Aug	gers	
RILL	ER:	JR		RIG NO.: 5	52 (CME	55)		LO	GGED BY: EJK		CHECKED BY:	AK
	DEPTH (FEET)	SYMBOLIC PROFILE	NORTHING: 284154.183 FT EASTING: 13291118.54 FT ELEVATION: 850.2 FT PROFILE DE	SCRIPTION		SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ O 10 20 30 40	DRY DENSITY (pcf) - ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ♥ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) > VANE SHEAR (REM) ♦ TRIAXIAL (UU) ♥ TRIAXIAL (UU) STRENGTH (KSF) 1 2 3 4 	REMARKS
50			 3 Inches of PAVE 3 FILL- Mix of Sand Concrete Debris- 3.0 	MEN I - See No , Gravel, and Gray	te 850.0	SB1	14	6 5 6	15			
5	- 5-		FILL- Mix of Sand Debris (Concrete, and Brick)- Brown 6.0	, Gravel, and Wood, Glass, - Moist	844.2	SB2	10	11 8 25 26	45			Blow counts likely influenced by debris
	•		FILL- Fine to Coal Gravel- Few Conc Brown & Gray- Mo 9.0	se SAND with rete Fragments bist (SP)	S- 841.2	SB3	6	28 14 9	34			Blow counts likely influenced by debris
0	10 -						10	13				
5	15 -					SB5	12	15 26				
D	20 -		Fine to Coarse SA Brown- Moist- De Dense (SP)	ND with Grave nse to Very	: -	SB6	10	15 16 18				
5	- 25					SB7	16	13 13 14				
	-30-					SB8	14	17 16 17	 			
G DU	ROUN RING END	DWATI BORI	R & BACKFILL INFORMATION DEPTH (FT) EL NG: 46.0 { IRING: 46.0 {	NOT EV (FT) 304.2 304.2	ES: 1. Th 2. Th rep 3. Pa 4. Bo	e indica e colors present vement ring log	ted str depic the in- appea elevat	ratifica cted on situ co ared to tions p	tion lines are approxi the symbolic profile lors encountered. consist of cemented rovided by SmithGrou	mate. The in-situ are solely for visua gravel. up.	transitions between n lization purposes and	naterials may be gradu I do not necessarily

3:24 PM		9	51	ME						E	PAGE 2 OF 2
0. N N F	PROJE	СТИ	NAME	E: 350 South Fifth Avenue Redevelopment			PR	OJECT NUMBER:	084868.01	BORI	NG DEPTH: 50 FEET
11/3/2		r: s	Smith	Group			PR	OJECT LOCATIO	N: Ann Arbor, M	ichigan	
		SDEPTH (FEET)	SYMBOLIC PROFILE	NORTHING: 284154.183 FT EASTING: 13291118.54 FT ELEVATION: 850.2 FT PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL ■ 10 20 30 40	 ♥ HAND PENE. ◙ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) > VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
- 8	320	-		Fine to Coarse SAND with Gravel- Brown- Moist- Dense to Very _{32.0} Dense (SP) <i>(continued)</i> 818.2	-						
- 8	315	- 35 – -		Fine to Medium SAND- Brown- Moist- Medium Dense (SP) 37.0 813.2	SB9	13	9 11 11				
	310	- - 40 -			SB10	10	28 50/4"	68	* >		[–] Driller reported driving a rock.
	305 V	- - 45 - - -		Fine to Coarse SAND with Gravel- Brown- Moist to Wet- Very Dense to Dense (SP)	SB11	12	20 24 26	6	8		
-	300	-50		50.0 800.2 END OF BORING AT 50.0 FEET.	SB12		11 13 13	36/			
	795	- - 55 - -									
	790	- 60 — -									
	785	- 65 — -									
-		-									

PROJ CLIEI		Smith(УЕ : 350 South Fift Group	h Avenue Redevelopm	nent			PR PR	OJECT NUMBER: OJECT LOCATION	084868.01 I: Ann Arbo	or, Mich	BOI	PAGE 1 OF 2 RING DEPTH: 50 FEET
DATE DRILI	E STA LER:	JR	: 1/5/23	COMPLETED: RIG NO.: 552	1/5/23 (CME	3 55)		BC LO	RING METHOD: GGED BY: EJK	Hollow-stem	Augers	S CHECKED B	Y: AK
ELEVATION (FEET)	о остн (геет)	SYMBOLIC PROFILE	NORTHING: 284155.4 EASTING: 1329119 ELEVATION: 852.3 FT PROF I	84 FT 7.79 FT LE DESCRIPTION		SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ O 10 20 30 40	DRY DENSI (pcf) ■ 90 100 110 MOISTURE ATTERBER LIMITS (% PL MC 1 10 20 30	TY 120 & G) 40	 HAND PENE. TORVANE SHEAR UNC. COMP. VANE SHEAR (PK) VANE SHEAR (REM TRIAXIA (UU) SHEAR STRENGTH (KSF) 1 2 3 4) REMARKS
- 850			 4 Inches of F FILL- Fine to Crushed Co Gray- Moist- 	PAVEMENT- See Note Coarse SAND- Few ncrete Fragments- Medium Dense (SP)	852.0- 	SB1	10	5 6 8	19		· · · · · · · · · · · · · · · · · · ·		
	5-					SB2	16	12 11 12 7))) / / /	8	· · · · · · · · · · · · · · · · · · ·		_
845			FILL- Fine to SAND with 0 Dense to Me	o Coarse CLAYEY Gravel- Brown- Moist- dium Dense (SC)		SB3 SB4	13 4	8 8 6 6	1 1 14		· · · · · · · · · · · · · · · · · · ·		
840	10 -		12.0		840.3			4					_
835	15 -					SB5	11	11 15 16	942 O		· · · · · · · · · · · · · · · · · · ·		_
830	20 -		Fine to Coar Brown- Mois Dense (SP)	se SAND with Gravel- t- Dense to Medium		SB6	16	5 6 8 8					
	25 -					SB7	18	15 14 17	42 0 1		· · · · · · · · · · · · · · · · · · ·		_
825			29.0 30.0 See Next Pa	ge for Description	823.3 822.3	SB8	11	61 27 8 9	48		· · · · ·		
GRO BACK	groun Undv Fill N	DWATE	R & BACKFILL INFORM WAS NOT ENCO D: Auger Cuttings & Plug & Asphalt Co	IATION NOTES UNTERED EPCO Hole Id Patch	: 1. The 2. The repr 3. Pav 4. Bori	e indica colors resent t rement ing log	ted str depic he in- appea elevat	ratificat ted on situ co ired to ions pi	tion lines are approxi the symbolic profile lors encountered. consist of cemented ovided by SmithGrou	mate. The in are solely for gravel. ıp.	-situ traı visualiza	nsitions betweer ation purposes a	n materials may be gradua and do not necessarily

PAGE 2 OF 2 BORING DEPTH: 50 FEET

PROJECT NAME: 350 South Fifth Avenue Redevelopment

PROJECT NUMBER: 084868.01

2	CLIENT:	SmithGroup
_		

PROJECT LOCATION: Ann Arbor, Michigan

REMARKS

11/3/23 2:03:25 PM

PROJ	FCT	3	M	E South Fifth A	wenue Redevelo	onment			PR		084868 01	BORI	PAGE 1 OF 3 NG DEPTH: 90 FEET
CLIEN	NT:	Smith	Group			pinent			PR		N: Ann Arbor, N	lichigan	
DATE	STA	RTE): 1/1	2/23	COMPLETE	D: 1/12/	23		вс	RING METHOD:	Hollow-stem Aug	gers	
DRILL	ER:	JR			RIG NO.: 5	552 (CME	55)		LO	GGED BY: EJK		CHECKED BY:	AK
ELEVATION (FEET)	роертн (FEET)	SYMBOLIC PROFILE	NORTH EASTIN ELEVAT	ING: 284185.007 G: 13290997.94 TON: 847.9 FT PROFILE	FT FT DESCRIPTION		SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ▼ HAND PENE. ▼ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (RK) × VANE SHEAR (REM) ◆ TRAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
- - - 845			ө.з 3.0	3 Inches of PA\ 3 FILL- Mix of Sa Concrete Debri	/EMENT- See No nd, Gravel, and s- Gray	ote 847.6	SB1	10	8 6 7	18			
	- 5 -			FILL- Fine to M Silt- Brown- Mc (SP)	edium SAND with ist- Medium Dens	n se	SB2	14	8 11 11 18	¹³⁰)+		
- 840 -	10 -		8.5 9.5	FILL- Fine to C Gravel- Trace E concrete, and F Brown- Moist (S FILL- Fine to M Silt- Brown- Mc FILL- Concrete	Darse SAND with Brick, Glass, Plastic Fragments SP) edium SAND with ist (SP) Debris- Grav	- 839.4 - 839.4 - 7 - 838.4	SB3	16	29 50/4" 17 21 24	62 62)		 Blow counts likely influenced by debris. Blow counts likely influenced by debris.
- 835	- - - 15 -		10.0	FILL- Fine to C Silt & Gravel- B Dense (SP-SM	parse SAND with rown- Moist- Ven)	/	SB5	6	16 18 22	55	5		
- 830 - 830	- 20 -		16.0	Fine to Coarse Moist- Medium	SAND- Brown- Dense (SP)	831.9	SB6	14	7 9 10	26.			
- 825	- 25		22.0	Fine to Coarse Brown- Moist- I Dense (SP)	SAND with Grave Dense to Very	825.9 9-	SB7	16	12 12 26	52	2		
- 820							SB8	12	13 14 17	1 1 42 0			
Q V DU V AT BACKI	RING END FILL N	DWATI BORI OF BC	ER & BAG NG: DRING: DD: A P	CKFILL INFORMAT DEPTH (FT) 42.0 Note 3 uger Cuttings & EPC lug & Asphalt Cold F	ION NOT ELEV (FT) 805.9 SO Hole atch	TES: 1. Th 2. Th 3. Pa 4. Dri lev 5. Bo	e indica e colors present f vement lling mu el meas ring log	ted st depic the in- appea id use suremo eleva	ratifica cted on situ co ared to d in ho ent cou tions p	tion lines are approxi the symbolic profile lors encountered. consist of cemented illow-stem augers bea ild not be obtained af rovided by SmithGrou	mate. The in-situ are solely for visua gravel. ginning at a depth ter the completion up.	transitions between n alization purposes and of 50 feet, therefore, of drilling activities.	naterials may be gradual. d do not necessarily an accurate groundwater

PAGE 2 OF 3 BORING DEPTH: 90 FEET

PROJECT NUMBER: 084868.01

1/3	CLIENT:	SmithGroup
~		

CLIEN	T: 3	Smith	Group	PROJECT LOCATION: Ann Arbor, Michigan									
ELEVATION (FEET)	З DEPTH (FEET)	SYMBOLIC PROFILE	NORTHING: 284185.007 FT EASTING: 13290997.94 FT ELEVATION: 847.9 FT PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 DRY DENSITY (pcf) - ■ ▼ HAND PENE. MOISTURE & ATTERBERG LIMITS (%) ▼ HAND PENE. ▼ HAND PENE. VANE SHEAR (PK) ▼ UNC. COMP. ▼ VANE SHEAR (PK) VANE SHEAR (REM) ♥ UNC. SHEAR (REM) ♥ TRAXIAL (UU) PL MC LL STRENGTH (KSF) 10 20 30 40 1 2 3						
- - 815 -			Fine to Coarse SAND with Gravel- Brown- Moist- Dense to Very	SB9	15	17 24 18	57 0						
- -810 - - - - -	- - 40 - -		Dense (SP) <i>(continued)</i> 42.0 805	SB10	13	17 19 19							
- 805 - - -	- 45 - -		Fine to Medium SAND- Brown- Wet- Dense (SP) 47.0 800	SB11	16	9 12 14							
- 800 - -	- - 50 -		Fine to Coarse SAND with Gravel-	SB12	15	11 10 11	29						
- - 795 - -	- - 55 -		Brown- Wet- Medium Dense to Dense (SP)	SB13	12	13 16 15							
- - 790 - -	- - 60 -		57.0 790	9 SB14	18	14 18 17							
- 785 - -	- - 65 -		Fine to Coarse SAND- Brown- Wet- Dense (SP)	SB15	11	15 16 17	45						
- - 780 -	-		67.0 780 Fine to Coarse SAND- Gray- Wet- Very Dense (SP)	9 SB16	12	19 22 26							

PAGE 3 OF 3

107.00.2	PROJE		51	ME 350 South Fifth Av	venue Redevelopmen	nt			PR		084868 01	BORIN	PAGE 1 OF 3 G DEPTH: 75 FEET		
-	CLIEN	T: \$	Smith	Group					PR		N: Ann Arbor, M	lichigan			
ŀ	DATE	STA	RTED	: 1/4/23	COMPLETED: 1	/4/23	23 BORING METHOD: Hollow-stem Augers								
	DRILLI	ER:	JR		RIG NO.: 552 (C	ME 55))		LO	GGED BY: EJK	-	CHECKED BY:	AK		
	ELEVATION (FEET)	DEPTH (FEET)	SYMBOLIC PROFILE	NORTHING: 284193.697 F EASTING: 13291175.11 ELEVATION: 851.1 FT PROFIL F D	T T FSCRIPTION	SAMPI E TYPE/NO	INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ - O	DRY DENSITY (pcf) - ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ♥ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ● VANE SHEAR (PK) × VANE SHEAR (REM) ♦ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 	REMARKS		
f	-	-0-		0.8 Note 2	/EMENT- See	850.3									
	- 850 - -	-		FILL- Mix of San Concrete Debris	d, Gravel, and - Gray ε	SE	31	10	12 11 16 9	37					
	- 845	5-		FILL- Fine to Me Silt- Brown- Mois to Dense (SP-SI	dium SAND with st- Medium Dense /)	SE	32	16 15	10 10 10 11						
		-		8.0		843.1			13						
		-		9.0 FILL- Concrete [Debris 8	842.1	34	8	21	14					
	- - 840 -	- 10 - - -		FILL- Fine to Co Silt & Gravel- Br Medium Dense t	arse SAND with own- Moist- o Loose (SP-SM)				6						
	- - 835 - -	- 15 - - -		15.0 Fine to Coarse S Brown- Moist- Vo	AND with Gravel- ry Dense (SP)	836.1 SE	36	10	18 19 22	Q	6 D				
	- - 830 - -	20 - - - -		22.0 Fine to Medium	SAND, Brown-	829.1	37	18	8	26					
	- 825	25 - - -		Moist- Medium [Jense (SP)	824.1	51	10	11						
		- 		Fine to Coarse S Brown- Moist- D	AND with Gravel- ense (SP)	SE	38	16	10 11 14	34					
	GF ↓ DUF ↓ AT E BACKF	Roun Ring End (BORIN DF BC	DEPTH (FT) E DEPTH (FT) E NG: 48.0 PRING: 40.0 DD: Auger Cuttings & EPCC Plug & Asphalt Cold Pa	DN NOTES: 1 LEV (FT) 2 803.1 3 811.1 4 D Hole ch	. The ind 2. The co represe 3. Pavem 4. Boring	dicat blors ent th ent a log e	ied str depic he in-s appea elevat	atifica ted on situ co red to ions p	tion lines are approx the symbolic profile lors encountered. consist of cemented rovided by SmithGro	timate. The in-situ are solely for visua d gravel. up.	transitions between ma lization purposes and	aterials may be gradual. do not necessarily		

PAGE 2 OF 3 BORING DEPTH: 75 FEET

uth Fifth Avenue Redevelopment

PROJECT NUMBER: 084868.01

13	CLIENT:	SmithGroup
~		

CLIEN	IT: S	Smith	Group		PROJECT LOCATION: Ann Arbor, Michigan									
ELEVATION (FEET)	S DEPTH (FEET)	SYMBOLIC PROFILE	NORTHING: 284193.697 FT EASTING: 13291175.11 FT ELEVATION: 851.1 FT PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 82% DATE: 9/29/2022 N ₆₀ - O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ✓ HAND PENE. ☑ TORVANE SHEAR ○ UNC. COMP. ○ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRIAXIAL (UU) STREAR STRENGTH (KSF) 1 2 3 4 	REMARKS				
- 820 - - - - - - 815 -			Fine to Coarse SAND with Gravel- Brown- Moist- Dense (SP) <i>(continued)</i> 37.0 814.1	SB9	12	16 12 13								
810	- - 40 - - -			SB10	13	20 22 25	6	54						
- - - 805 -	- - 45 - -		Fine to Coarse SAND with Gravel- Occasional Cobbles- Brown- Moist to Wet- Very Dense to Extremely Dense (SP)	SB11	15	21 29 32		13 D						
_ ⊻ - - 800	- 50 - -		51.0 800.1	SB12	16	23 25 35		2						
- - - 795	- - 55 - - -			SB13	12	15 16 18	46							
- - - 790	- - 60 - -		Fine to Coarse SAND- Brown- Wet- Dense to Very Dense (SP)	SB14	16	21 23 26		77 D						
- - - 785 -	- - 65 - -			SB15	6	20 20 24		0 D						

(Continued Next Page)

18

SB16

20 19 26

| 62 ⊕

105 -

-110-

- 745

BORING B11

PAGE 3 OF 3 RING DEPTH: 75 FFFT

2:03	PROJE	ст м		- 350 South Fifth Avenue Redevelopment	PR	BORING DEPTH: 75 FEET PROJECT NUMBER: 084868.01									
1/3/23	CLIENT	с. Г: S	Smith	Group			PR	OJECT	LOC		N: Ann /	Arbor, Mi	ichigan		
-	ELEVATION (FEET)	SDEPTH (FEET)	SYMBOLIC PROFILE	NORTHING: 284193.697 FT EASTING: 13291175.11 FT ELEVATION: 851.1 FT PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMM EFFIC DATE: N ₆₀ C	ER ENCY: 9/29/20 0	82% 022 40	DRY DE (pcf) 90 100 MOISTU ATTER LIMITS PL MC 10 20	NSITY ■ 110 120 JRE & BERG S (%) 2 LL 	 ♥ HAND PI ♥ TORVAN ● UNC.CC ● VANE SI ♦ TRIAXIAI SHE STRENG 1 2 	ENE. E SHEAR MP. HEAR (PK) HEAR (REM) (UU) EAR TH (KSF) 3 4	REMARKS
-	-780	-70		Fine to Coarse SAND- Brown- Wet- Dense to Very Dense (SP) (continued) 75.0 776.1	SB17	15	20 20 22			5	7				
-	775	-		END OF BORING AT 75.0 FEET.											
-	770	80													
-	-765	- 85 -													
-	- 760	- 90 -													
		- - 95 -													
-	755	-													
	-750	- 100 – -							· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			

PROJ CLIEN	ECT । IT: ध	NAME: 3 SmithGrou	350 South Fifth Aven up	ue Redevelopm	ent			PR PR	OJECT NUMBER: OJECT LOCATIO	: 084868.01 N: Ann Arbor, M	chigan	
ATE	STA	RTED: 1	/10/23	COMPLETED:	1/10/	23		BC	RING METHOD:	Hollow-stem Aug	ers	
DRILL	ER:	JR	I	RIG NO .: 552	(CME	55)		LO	GGED BY: EJK		CHECKED BY:	AK
JN (FEEI)	EET)	0				E/NO.	CHES)	: PER	HAMMER EFFICIENCY: 82%	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE &	 ✓ HAND PENE. M TORVANE SHEAR ● UNC. COMP. ● VANE SHEAR (bk) 	
	DEPTH (F	UNOR EAS ELEV	THING: 284239.584 FT TING: 13291174.02 FT /ATION: 851.2 FT PROFILE DESC	RIPTION		SAMPLE TYP INTERVAL	RECOVERY LENGTH (IN	SPT BLOWS SIX INCHES	DATE: 9/29/2022 N ₈₀ O 10 20 30 40	ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	× VANE SHEAR (FK) TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4	REMARKS
		0 .3	3 Inches of PAVEMI	ENT- See Note	851.0 [.] /							
50	-		FILL- Mix of Sand, 0 Debris (Concrete ar	Gravel, and Id Brick)- Gray		SB1	16	10 6 7				
	- 5	3.5			847.7	SB2	14	11 10 11	\ 29 			
45	-		FILL- Fine to Mediu Silt- Brown- Moist- M (SP-SM)	m SAND with <i>I</i> edium Dense		SB3	16	8 6 6	16 ⁴			
	- - 10 -	9.5			841.7	SB4	16	10 12 5	23			
40		12.0	Silt & Gravel- Few C Fragments- Brown-	SAND with Concrete Moist SP-SM	839.2							
35	- - 15 - -											
30	- - 20 -											
	- - 25 -											
25	-											
	-30-											
G	ROUN	DWATER & E	BACKFILL INFORMATION	NOTES:	1. The	e indica	ted str	atifica	tion lines are approx	imate. The in-situ t	ransitions between m	aterials may be grad
GROI ACKI	COUNDWATER WAS NOT ENCOUNTERED SKFILL METHOD: Auger Cuttings & EPCO Hole Plug & Asphalt Cold Patch						depic the in- appea elevat	ted on situ co red to ions p	the symbolic profile lors encountered. consist of cemented rovided by SmithGro	are solely for visua I gravel. up.	ization purposes and	ao not necessarily

										BO	RING B101
			ME								PAGE 1 OF 2
PROJE	СТ	NAME	: 350 South Fifth Ave	nue			PR	OJECT NUMBER	: 073815.00		
CLIEN	T : 1	The H	abitat Company				PR	OJECT LOCATIO	N: Ann Arbor, N	Michigan	
DATES	STA	RTED	: 2/23/16	COMPLETED: 2	2/23/16		BC	RING METHOD:	Hollow-stem Au	gers	
DRILLE	ER:	JR		RIG NO.: 253			LO	GGED BY: KJT		CHECKED BY:	CGN
ELEVATION (FEET)	DEPTH (FEET)	SYMBOLIC PROFILE	SURFACE ELEVATION: 850 FT PROFILE DES	CRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	BLOWS PER SIX INCHES	N-VALUE O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ✓ HAND PENE. ☑ TORVANE SHEAR ○ UNC.COMP. ○ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
-	-		CONCRETE	LT	849.8						
- - - 845 -	- - 5 -		FILL- Fine to Mediu Silt & Gravel- Trace Fragments & Aspha Brown- Moist (SP-S	Im SAND with Brick alt- Gray & IM)	SB1 SB2 844.0 SB3	18 9 12	7 18 14 11 14	32 O I 36			
- - 840 - -	- - 10 - -		FILL- Fine to Mediu Gravel- Trace Cono Fragments & Root & Dark Brown- Moi	m SAND with srete, Brick Fibers- Brown st- Dense (SP)	<u>(SB4</u>)**		22 50/2")+ D		
- - 835 - -	- 15 - - -		16.0		SB5	9	20 21 16	37 O I I I			
- - 830 -	- 20		Fine to Coarse SA	ND with	SB6	6	16 19	35 () () () () () () () () () () () () ()			
- - 825 - -	- 25 -		Brown- Moist- Dens Dense (SP)	e to Medium	SB7	14	7 11 10				
- 820 -	- 30 — -		31.0		SB8 819.0	15	9 9 9				
- - 	- - -35-		Fine to Coarse SAI Gravel- Brown- Mo Dense (SP)	ID with st- Extremely	SB9	12	24 36 40	7	6 D		
		WATE		NOTEC	• T L - 1 - 1						ala ara ka
⊻ DUR ¥ AT E BACKFI	ING ND (BORIN DF BO	DEPTH (FT) ELEV IG: 44.0 80 RING: 44.0 80 D: Auger Cuttings capped with Asphalt Cold Patch	(FT) 6.0 6.0	1. The indicat	ed stra	atificati	on lines are approxin	nate. In situ, the trai	nsition between materi	als may be

LIEN	NT:	The Ha	bitat Company	nvenue			PR	OJECT LOCATION	N: Ann Arbor, I	Michigan	
ATE	STA	RTED:	2/22/16	COMPLETED:	2/22/16		во	RING METHOD:	Hollow-stem Au	igers	
RILL	ER:	JR		RIG NO.: 253			LO	GGED BY: KJT		CHECKED BY:	CGN
ELEVATION (FEET)	DEPTH (FEET)	SYMBOLIC PROFILE	URFACE ELEVATION: 85 PROFILE	2 FT DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	BLOWS PER SIX INCHES	N-VALUE O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL I MC LL 10 20 30 40	 ♥ HAND PENE. ⊠ TORVANE SHEAR O UNC.COMP. ♥ VANE SHEAR (PK) ★ VANE SHEAR (REM) ♦ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 (KSF) 	REMARKS
350			3 4 inches of ASI CONCRETE FILL- Fine to M Gravel & Asph 0 Gray- Moist- M	PHALT ledium SAND with alt Fragments- edium Dense (SP)	851.7- 	8	7 8 10 10 10 10	18 0			
845	-				SB3	11	6 7 6 8	13' O I I 15			
840	- 10 - - -		FILL- Fine to M Silt- Trace Bric Fragments & R & Dark Brown- Dense (SP-SM	ledium SAND with k & Concrete oot Fibers- Brown Moist- Medium)	SB4	6	6 7				
835	15 - - - - - -				SB6	8	6 7 7 7				
830	- 20	2	2.0		830.0						
825	- 25 - -		Fine to Coarse Gravel- Brown- (SP-SM)	SAND with Silt & Moist- Dense	SB7	12	18 23 26				
	- 30 – -	3	2.0		SB8 820.0	16	19 16 22	38 0- 1 1			
020	- - 		Fine to Coarse Gravel- Brown- Dense to Mediu	SAND with Moist to Wet- um Dense (SP)	SB9	15	18 18 21				
GI	ROUNF	WATER	& BACKFILL INFORMAT		1 The indice	tod ot-	atificati	on lines are opproving	ato. In situ the tre	nsition botwoon metari	
∑ DU Y AT	RING END (BORING DF BOR	DEPTH (FT) G: 44.0 ING: 44.0	ELEV (FT) 808.0 808.0	gradual.	iea str	auncati	on ines are approxim	ale. In situ, the tra	nsiuon detween materia	ais may be

			E						BC	DRING B102
			E							PAGE 2 OF 2
PROJ	ЕСТ лт.	NAME:	350 South Fifth Avenue			PR	OJECT NUMBER	:: 073815.00	lichigan	
I (FEET)	(L)			ÖN	HES)			DRY DENSITY (pcf) 90 100 110 120	 ✓ HAND PENE. ⊠ TORVANE SHEAR O UNC.COMP. 	
ELEVATION	 8 DEPTH (FE	SYMBOLIC PROFILE	FACE ELEVATION: 852 FT PROFILE DESCRIPTION	SAMPLE TYPE INTERVAL	RECOVERY LENGTH (INC	BLOWS PER SIX INCHES	N-VALUE O	MOISTURE & ATTERBERG LIMITS (%) PL MC LL I 0 20 30 40	 VANE SHEAR (PK) X VANE SHEAR (REM) ♦ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 	REMARKS
- 815 -										
-	40		Fine to Coarse SAND with Gravel- Brown- Moist to Wet- Dense to Medium Dense (SP)	SB10	12	11 12 15				
- 810 	⊈ 45		(continued)	SB11	16	10 12 12				
- - 805 -		47.0		805.0						
	50			SB12	13	10 14				
-	55			SB13	10	10 12 12				
- - 795 -				274	10	11	 27			
- - - 790	60		Fine to Coarse SAND with Silt & Gravel- Brown- Wet- Medium Dense to Dense (SP-SM)	5B14	16	16				
-	65			SB15	12	14 13 18	t 31 			
- 785 - -				SB16	14	18 16				
- - - 780	70					20				
-	-75-			777.0 SB17	18	15 18 18				
- 775		-	LAD OF BONING AT 10.01 LET.							
-	80	-								
		-								

soil and materials engineers, inc.

ROJ							A/E:		. 12/21/05	BORIN	3 B1
LIEN	IT:	OCATION:	ANN ARBOR, MICHIC	<i>3/</i> 4/14			PROJE	CT NUMBER: P	G51735	SHEET:	: 1
DEPTH (FEET)	SYMBOLIC PROFILE	D EASTING: NORTHING: GROUND SU ELEVATION=	PROFILE ESCRIPTION IRFACE = 848	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD PENETF TEST RESISTANCES (N-values) 10 20 30	RATION S 40 50	NATURAL DRY DENSITY (pcf) 90 100 MOISTURE, % ATTERBERG I 0 10 20	110 ◆ → LIMITS 30 40 0.	LEGENI ∀ HAND PENETROM × TORVANE SHEAR ∪ UNCONFINED CON vane SHEAR TES × REMOLDED VANE ↑ TRIAXIAL TEST SHEAR STRENGTH 0 1.0 2.0) ETER TEST TEST APRESSION TEST T SHEAR (KSF) 3.0 4.0 5.1
0		Driller repo Portland C Driller repo Coarse Sa	orted 6 inches of ement Concrete orted 6 inches of nd & Gravel Base	SS1	7 10 10	P I					
5 -		Fine Sand Trace Grav Partings- E Dense to L	- Trace to Some Silt- vel- Occasional Clay Brown- Moist- Medium .oose (SP-SM/Fill)	SS2	2 3 4	4					
				SS3	3 4 5	d ,					
10 -				SS4	11 14 14 14	<u> </u>					
1				SS5 SS6	15 16 12 14	Ċ	۲ ۲				
15 -				SS7	22 13 16		<u>ү</u> 				
20 -		Fine to Co	arce Sand-Trace to	SS8	7 7 9						
25 –		Fine to Coarse Sa Some Silt & Grave Cobble & Gravel L Moist- Medium De Dense (SP-SM)	& Gravel- Occasional Gravel Layers- Brown- lium Dense to Very -SM)	SS9	8 10 16						
30 —				SS10	15 16 22		\				
35		WATER LEVEL	DBSERVATIONS	SS11	52 46 30	1. THE INDICATED STRA		LINES ARE APPROXI	MATE. IN SITU,	THE TRANSITION BETW	EEN MATERIALS MA
		DWATER ENCOL DWATER ENCOL OMPLETION OF		stem 4		BE GRADUAL. 2. DRILLER REPORTED		LING: 47	MPLE SS11	HOURS AFTER C	OMPLETION:

RIG NO.: 26

5

BACKFILL METHOD: Auger Cuttings WATER LEVEL UPON COMPLETION: 47

CAVE OF BOREHOLE AT

soil and materials engineers, inc.

PROJE		AME:					A/E:		DATE	. 10/01/0	-		POPIN	C 81	
	ECT L	OCATION: ANN ARBOR, MICHIG	GAN				PROJE	CT NUN	BER: P	G51735	5		SHEE	сы т: 2	
DEPTH (FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 848	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARE TEST RESI (N-values) - 10	D PENETRA STANCES	40 50	NATUR/ DENSIT (pcf) MOISTU ATTERI 0 10	AL DRY Y - JIRE, % - BERG - 20	110 ◆ → LIMITS 30 40	∇ ⊠ ○ ● × ⊕ 0.0	HAND F TORVA UNCON VANE S REMOL TRIAXI/ IEAR ST 1.0	LEGEN PENETROI NE SHEAN FINED CC HEAR TE DED VAN AL TEST IRENGT 2.0	ID WETER TI R TEST OMPRESS ST E SHEAR H (KSF) 3.0	EST ION TEST 4.0 5.1
35		Fine to Coarse Sand- Trace to Some Silt & Gravel- Occasional Cobble & Gravel Layers- Brown- Moist- Medium Dense to Very Dense (SP-SM)		14			/		*****					*****	
40 -		Fine to Medium Sand- Some Silt Trace Gravel- Brown- Moist- Medium Dense to Dense (SM)	- - SS13	14 12 18 22		<u> </u>	\								
45 - ₩ ₩		Fine to Coarse Sand- Trace to Some Silt & Gravel- Brown- Wet Medium Dense (SP-SM)	SS14	10 10 10		6	,								
50 -		END OF BORING AT 50 FEET.													
55 -													*****		
60 -															
65 -															
70 ₹ 0 ₹ 0	GROUN GROUN GROUN GROUN C	WATER LEVEL OBSERVATIONS DWATER ENCOUNTERED DURING DRILLIN DWATER ENCOUNTERED OMPLETION OF DRILLING	IG	Notes:	1. THE INDIC BE GRADUAL 2. DRILLER F	ATED STRA	TIFICATION	LINES AR	E APPROXI BLES AT SA	MATE IN SIT	I IU, THE	TRANSI	TION BET	WEEN M	ATERIALS MA
Ţ Ţ G U U D RILLI	BROUN BROUN JPON C	M DRILL METHOD: Hollow	-stem /	Auger	2. DRILLER F	REPORTED E	RING DRIL	RING COB	BLES AT SA	MPLE SS11	/EL	HOUR	S AFTER	COMPL	ETION

5111

BACKFILL METHOD: Auger Cuttings WATER LEVEL UPON COMPLETION: 47

soil and materials engineers, inc.

		ΔΝ			A/E:		TE: 12/22/04	5 BORING B	,
IFNT:	ATION: ANN ARBOR, MICHIG				PROJE	CT NUMBER:	PG51735	SHEET: 1	
(FEET) SYMBOLIC PROFILE PLOFILE	PROFILE DESCRIPTION STING: ORTHING: ROUND SURFACE EVATION= 853	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD PENETRA TEST RESISTANCES (N-values) 10 20 30	TION 40 50	NATURAL DRY DENSITY (pcf) MOISTURE, % ATTERBERG 0 10 20	0 110 ◆ I LIMITS 0 30 40	LEGEND ✓ HAND PENETROMETER M TORVANE SHEAR TEST O UNCONFINED COMPRE: ■ VANE SHEAR TEST × REMOLDED VANE SHEA ◆ TRIAXIAL TEST SHEAR STRENGTH (KSF 0.0 1.0 2.0 3.0	TEST 3SION TEST IR ²) 4.0 5
	Priller reported 6 inches of Portland Cement Concrete ine to Medium Sand- Some Silt- race Gravel & Brick Fragments- occasional Clay Partings- Light	SS1	3 5 3	9					
5	Clayey Sand- Some Silt- Trace to Some Gravel- Trace Brick, Wood Gragments & Wood Fibers- Dark Brown- Moist- Medium Dense	SS2	3 5 10 4	<u>}</u>					
	56/FIII)	SS3 SS4	6 8 6 9	4					*****
D-		SS5	13 10 14 20		/				
5-		SS6	38 44 25		069-1				
		SS7	18 21 30		O51 ⊣				
0 - 5 . 0 . 0	Fine to Coarse Sand- Trace to Some Silt & Gravel- Occasional Gravel Layers- Brown- Moist- Medium Dense to Extremely Dense (SP-SM)	SS8	12 13 16	K					
5-		SS9	43 36 20		O56				
0-		SS10	19 20 20		d (
5	TER LEVEL OBSERVATIONS	SS11	82/5")82/5"		DXIMATE. IN SIT	U, THE TRANSITION BETWEEN	MATERIALS
GROUNDWA	ATER ENCOUNTERED DURING DRILLING ATER ENCOUNTERED PLETION OF DRILLING		.0163.	BE GRADUAL. 2. GROUNDWATER WAS 3. MINIMUM SAMPLE REC GRAVEL.	NOT ENCO	OUNTERED. ROM SAMPLES SS7	, SS9, SS11 & SS	S12 DUE TO ENCOUNTERING CO	BBLES &

RIG NO.: 26

BACKFILL METHOD: Auger Cuttings WATER LEVEL UPON COMPLETION: None CAVE OF BOREHOLE AT
ROJECT	LOCATION: ANN ARBOR, MICHIC	GAN			BY: SE PROJE	B/EOL DAT	E: 12/22/05 PG51735	5 BORING SHEET: 2	B2
(FEET) SYMBOLIC	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 853	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD PENETRA TEST RESISTANCES (N-values) – O 10 20 30	TION 40 50	NATURAL DRY DENSITY – (pcf) 90 100 MOISTURE, % – ATTERBERG F 0 10 20	110 - • - LIMITS 30 40	LEGEND HAND PENETROMET TORVANE SHEAR TE UNCONFINED COMPI VANE SHEAR TEST REMOLOED VANE SH TRIAXIAL TEST SHEAR STRENGTH (K 0.0 1.0 2.0 3	ER TEST ST RESSION TEST IEAR (SF) 0 4.0 5.
35	Fine to Coarse Sand- Trace to Some Silt & Gravel- Occasional Gravel Layers- Brown- Moist- Medium Dense to Extremely Dense (SP-SM)		25						
40 -		5512	50		⊃100 →				
45 -	Fine to Medium Sand- Trace to Some Silt- Trace Gravel- Light Brown- Moist- Extremely Dense to Very Dense (SP-SM)	SS13	23 43 50		93 →				
50	END OF BORING AT 50 FEET.	SS14	12 21 31		52 -→	-			
55 -									
- 50 - -									
55 - -									
ZO ¥ GROU ¥ GROU UPON	WATER LEVEL OBSERVATIONS INDWATER ENCOUNTERED DURING DRILLING INDWATER ENCOUNTERED I COMPLETION OF DRILLING	3	lotes:	1. THE INDICATED STRAT BE GRADUAL 2. GROUNDWATER WAS M 3. MINIMUM SAMPLE RECT GRAVEL.	FICATION IOT ENCO OVERY FR	LINES ARE APPRO) UNTERED. DM SAMPLES SS7, 5	KIMATE. IN SIT SS9, SS11 & SS	U, THE TRANSITION BETWEE	N MATERIALS M/ COBBLES &

PROJE	ECT N		SAN			A/E:	PF/FOL D	ATE: 12/12/0	5	BORING B3	
CLIEN	T:		,			PROJE	CT NUMBER	PG51735		SHEET: 1	
JEPTH (FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 850	SAMPLE TYPE/NUMBER NTERVAL	SIX INCHES	STANDARD PENETRA TEST RESISTANCES (N-values)	TION 40 50	NATURAL DR DENSITY – (pcf) 90 1 MOISTURE, 9 ATTERBERG	00 110 6 - ◆ → LIMITS 20 30 40	V HANI ⊠ TOR' O UNC ■ VANI X REM ⊕ TRIA SHEAR	LEGEND D PENETROMETER T VANE SHEAR TEST DNFINED COMPRESS SHEAR TEST OLDED VANE SHEAR XIAL TEST STRENGTH (KSF) 2.0 3.0	EST NON TEST
0		Driller reported 12 inches of Sand	07			40 50		1 1	0.0 1.0		
¥ 5-		Clayey Fine to Medium Sand- Some Silt- Trace to Some Gravel- Dark Brown- Moist- Loose (SC/Fill)	SS1 SS2	3 3 4 3 3 4							
-			SS3	3 4 6	d						医子宫 医子宫 医子宫 医子宫
10 -			SS4	10 12 16	<u> </u>						
-			SS5	8 11 15 10	¢ /						-
15 -			SS6	10 12 12	¢						
-		Fine to Medium Sand- Trace to Some Silt & Gravel- Occasional Gravel & Cobble Lavers- Brown-	SS7 SS8	12 14 15 16 21	Å,	φ					
20 -		Moist- Medium Dense to Extremely Dense (SP-SM)	SS9	9 17							
25 -			\$\$10			0.575"					
30 -			5510	30/0							
		WATER LEVEL OBSERVATIONS	SS11	52 35 24	1. THE INDICATED STRAT	059 -	LINES ARE APPR	ROXIMATE. IN SIT	U, THE TRAN	SITION BETWEEN M	ATERIALS MA
¥ G ¥ G U		M DRILL METHOD: Hollow	stem 4		2. GROUNDWATER WAS N 3. DRILLER REPORTED EN		UNTERED UPON RING COBBLES &	COMPLETION OF GRAVEL AT SAM	DRILLING PLE SS10 EL HOIII	RS AFTER COMPL	.ETION:

RIG NO.: 26

5

BACKFILL METHOD: Auger Cuttings WATER LEVEL UPON COMPLETION: None CAVE OF BOREHOLE AT

PROJ PROJ	ECT N ECT L	NAME: COCATION: ANN ARBOR, MICHIC	GAN				A/ B)	E: /: EF	E/EOL	DAT	E: 12/1	2/05		вс	ORING	B3	
CLIEN	IT:						PF	ROJE		BER:	PG5173	5		SF	IEET: 2		
DEPTH (FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 850	SAMPLE TYPE/NUMBER	BLOWS PER SIX INCHES	STANDARI TEST RESI (N-values) -		TRATIO ES	N 0 50	NATUR DENSIT (pcf) 90 MOISTU ATTER	AL DRY Y - 0 100 URE, % - BERG 1 0 20	- • LIM		 ✓ HA ✓ TO ✓ UN ✓ A ✓ RE ✓ TR ✓ SHEA ○ 10 	L ND PENE RVANE S ICONFINE NE SHEA MOLDED NAXIAL T	EGEND ETROMETI SHEAR TE ED COMPF IN TEST VANE SH EST NGTH (K 0 3	ER TEST ST LESSION EAR SF) 0 4	TEST
35	19164							00		1	Ť	10 0.					
40 -		Fine to Medium Sand- Trace to Some Silt & Gravel- Occasional Gravel & Cobble Layers- Brown- Moist- Medium Dense to Extremely Dense (SP-SM)	SS12	55 41 36			0	77 ->									
			SS13	12 14 18			ç	/									
45 -		Fine to Medium Sand- Trace to Some Silt- Trace Gravel- Brown- Moist- Dense to Medium Dense (SP-SM)															
50 -			SS14	14 12 16		6											
							*************									-	
55 -																	
60 -																	
-																	
65 -																	
-																	
70																	
₩ ₩ ₩ ₩	GROUNI GROUNI JPON C	WATER LEVEL OBSERVATIONS DWATER ENCOUNTERED DURING DRILLING DWATER ENCOUNTERED OMPLETION OF DRILLING) }	lotes:	1. THE INDIC/ BE GRADUAL 2. GROUNDW 3. DRILLER R	ATED STI ATER WA	RATIFICA AS NOT D ENCOL	ATION I ENCOL UNTER	INES ARE	E APPRO) UPON CC BLES & GF		n Situ, N of DF Sample	THE TRA RILLING E SS10	ANSITION	BETWEE	N MATER	IALS MA
DRILLI	ER: R	M DRILL METHOD: Hollow-	stem A	Augers	WATER L	EVEL D	URING	DRILI	ING: 3		WATER	EVEL	но	URS AF	TER COM	IPLETIC	DN:

RIG NO.: 26

A/E: **PROJECT NAME:** PROJECT LOCATION: ANN ARBOR, MICHIGAN BY: GD/EOL DATE: 12/19/05 **BORING B4** CLIENT: PROJECT NUMBER: PG51735 SHEET: 1 LEGEND PROFILE ∇ HAND PENETROMETER TEST NATURAL DRY SAMPLE TYPE/NUMBER INTERVAL DESCRIPTION \boxtimes TORVANE SHEAR TEST DENSITY --0 UNCONFINED COMPRESSION TEST STANDARD PENETRATION (pcf) VANE SHEAR TEST TEST RESISTANCES REMOLDED VANE SHEAR EASTING: SYMBOLIC PROFILE BLOWS PER SIX INCHES 90 100 110 (N-values) -- O . Ф TRIAXIAL TEST NORTHING: MOISTURE, % --DEPTH (FEET) ٠ SHEAR STRENGTH (KSF) GROUND SURFACE ATTERBERG H LIMITS ELEVATION= 854 30 40 50 10 20 40 0.0 1.0 2.0 3.0 4.0 5.0 10 30 Driller reported 5 inches of Asphalt Concrete з Driller reported 8 inches of SS1 4 Coarse Sand & Gravel Base C 5 Clayey Sand- Some Silt- Trace to 3 Some Gravel- Trace Brick- Dark SS2 4 Brown- Moist- Loose to Medium 5 5 Dense (SC/Fill) 4 SS3 5 6 8 \$S4 12 14 10 14 SS5 15 16 16 SS6 16 15. 15 SS7 16 21 18 22 24 SSB 20 Fine to Coarse Sand-Some Gravel- Trace to Some Silt-**Occasional Cobble & Gravel** Lavers- Brown- Moist- Medium Dense to Dense (SP-SM) 18 SS9 18 13 25 12 SS10 18 22 30 20 22 SS11 Ć 35 22 THE INDICATED STRATIFICATION LINES ARE APPROXIMATE. IN SITU, THE TRANSITION BETWEEN MATERIALS MAY WATER LEVEL OBSERVATIONS Notes: 1 **BE GRADUAL** GROUNDWATER ENCOUNTERED DURING DRILLING 2. GROUNDWATER WAS NOT ENCOUNTERED. 뀿 GROUNDWATER ENCOUNTERED UPON COMPLETION OF DRILLING DRILL METHOD: Hollow-stem Augers WATER LEVEL DURING DRILLING: None WATER LEVEL DRILLER: RM

RIG NO.: 26

BACKFILL METHOD: Auger Cuttings WATER LEVEL DO

WATER LEVEL UPON COMPLETION: None

HOURS AFTER COMPLETION: CAVE OF BOREHOLE AT

PROJECT	NAME:				A/E:		
PROJECT	LOCATION: ANN ARBOR, MICHIG	GAN			BY: G	D/EOL DATE: 12/19/0	5 BORING B4
CLIENT:					PROJE	CT NUMBER: PG51735	SHEET: 2
DEPTH (FEET) SYMBOLIC	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 854	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD PENETRA TEST RESISTANCES (N-values) O	TION 40 50	NATURAL DRY DENSITY (pcf) 90 100 110 MOISTURE, % ATTERBERG I LIMITS 0 10 20 30 40	∨ LEGEND ∨ HAND PENETROMETER TEST ∨ TORVANE SHEAR TEST ∨ UNCONFINED COMPRESSION TEST ∨ VANE SHEAR TEST × REMOLDED VANE SHEAR ⊕ TRIAXIAL TEST SHEAR STRENGTH (KSF) 0.0 0.0 1.0 2.0 3.0 4.0 5.0
35	1.				1000		
40	Fine to Coarse Sand- Some Gravel- Trace to Some Silt- Occasional Cobble & Gravel Layers- Brown- Moist- Medium Dense to Dense (SP-SM)	SS12	20 24 25		- - - -	<u>></u>	
45-	Fine to Medium Sand- Trace to Some Silt- Trace Gravel- Brown- Moist- Very Dense (SP-SM)	SS13	20 25 44		<u> </u>		
50	END OF BORING AT 50 FEET.	SS14	18 34 36				
55 -							
60							
65 -							
	WATER LEVEL OBSERVATIONS		lotes:	I. THE INDICATED STRATI BE GRADUAL.	FICATION	LINES ARE APPROXIMATE. IN SIT	U, THE TRANSITION BETWEEN MATERIALS MAY
₩ GROU ₩ GROU UPON DRILLER:	RM DRILL METHOD: Hollow-	stem A	ugers	2. GROUNDWATER WAS N	IOT ENCOL	UNTERED.	- HOURS AFTER COMPLETION:

RIG NO.: 26

ROJ	ECT N ECT I	AME: OCATION: ANN ARBOR, MICHIG	GAN			A/E: ■ BY: G	D/EOL	DATE:	12/20/0	5		BORIN	IG B5	
	LT:					PROJE	CT NUM	BER: PG	51735			SHEE	Г: 1	
JEPTH FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE FI EVATION= 854	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD PENETRA TEST RESISTANCES (N-values) – O	40 50	NATURA DENSITY (pcf) 90 MOISTUI ATTERB 0 10	L DRY → ■ 100 RE, % – ERG → 20	110 ♦ LIMITS 30 40	∇ ⊠ 0 • × • 0.0	HAND TORVA UNCON VANE S REMOI TRIAXI IEAR S	LEGEI PENETRO INE SHEA NFINED CO SHEAR TE JED VAN AL TEST TRENGT 2.0	ND METER 1 R TEST OMPRES ST E SHEAR H (KSF) 3.0	EST SION TEST 4.0 5.
0		Driller reported 3 inches of								ĺ				
		Driller reported 9 inches of Coarse Sand & Gravel Base	SS1	10 10 7	p									
5 —		Clayey Sand- Some Silt & Gravel- Trace Concrete, Brick & Slag- Dark Brown- Moist- Medium Dense to Loose (SC/Fill)	SS2	2 3 3	d									
28			SS3	2 3 6	6									
10 -			SS4	25 25 20		~ \p								
2 5			SS5	8 15 26		4								
15 -			SS6	10 12 24		ر م								
3			SS7	12 12 15	Ŕ									
20 -		Fine to Coarse Sand- Trace to	SS8	12 12 12	4									
3		Some Silt & Gravel- Occasional Gravel & Cobble Layers- Brown- Moist- Medium Dense to Very Dense (SP-SM)	220	25		, / , , / ,								
25 -			338	52					_					
30 -			SS10	12 17 32			<u></u>							
35	-		SS11	25 25 28	1. THE INDICATED STRA	O53 -		APPROXIM	ATE. IN SI	TU. THI	TRANS	ITION BE		IATERIALS M
	GROUN GROUN UPON C	DWATER ENCOUNTERED DURING DRILLIN DWATER ENCOUNTERED OMPLETION OF DRILLING	G	10183	BE GRADUAL. 2. GROUNDWATER WAS 3. DRILLER REPORTED E	NOT ENCO	UNTERED. RING COBB	LES & GRAV	/EL AT SAM	IPLES	SS4, SS5	6 & SS9.		

RIG NO.: 26

BACKFILL METHOD: Auger Cuttings WATER LEVEL UPON COMPLETION: None CAVE OF BOREHOLE AT

PROJ	ECT	NAME:					A/	E:										
PROJ	ECTI	OCATION: ANN ARBOR, MICHI	GAN				B	/: G[D/EOL	DA	TE: 1	2/20/0	5		BORI	NG B5		
DEPTH FEET)	SYMBOLIC ::	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 854	SAMPLE TYPE/NUMBER NTERVAL	BLOWS PER SIX INCHES	STANDAR TEST RES (N-values)		TRATIO ES	N 50	NATU DENS (pcf) MOIS	RAL DR' ITY	PG5 1 00 1 - •	10 LIMITS	V ⊘ ∎ X ⊕	HAND TORV UNCO VANE REMO TRIAX	SHEE LEGE PENETRO ANE SHEA NFINED C SHEAR T LDED VA IAL TEST STRENG	II: 2 SND DMETER 1 AR TEST COMPRES: EST NE SHEAF TH (KSF) 3.0	TEST SION TE	:ST 5.0
35						20 ,		0 30			<u> </u>	40	0.0				10	
40 -		Fine to Coarse Sand- Trace to Some Silt & Gravel- Occasional Gravel & Cobble Layers- Brown- Moist- Medium Dense to Very Dense (SP-SM)	SS12	16 24 41				65>										
			5513	28														
45 -		Fine Sand- Some Silt- Trace Gravel- Brown- Moist- Very Dense to Dense (SM)	5010	36				64	1									
			SS14	12 14			2							-				
50 - 55 -		END OF BORING AT 50 FEET.		20														2
60 -																		
65 -																		
70	-	WATER LEVEL OBSERVATIONS		lotes:	1 THE INDIC	CATED ST	RATIFIC	ATION	LINES A	RE APPR	DXIMATI	1 E. IN SIT	U, THE	TRANS	ITION BE	: TWEEN M	ATERIA	LS MAY
₩ ₩ ₩ ₩			stem 4	Auger	BE GRADUAI 2. GROUND 3. DRILLER			ENCOL UNTER	INTERE	D. BBLES & (None	GRAVEL	AT SAM	PLES S	S4, SS5	& SS9	COMPI	LETION	4:

	GAN			BY: SE	B/EOL DATE	: 12/22/05	BO	RING B6
PROFILE DESCRIPTION G:	LE TYPE/NUMBER VAL	S PER CHES	STANDARD PEN TEST RESISTAN (N-values) O	PROJE	CT NUMBER: F NATURAL DRY DENSITY - ■ (pcf) 90 100 MOISTURE, % -	110	UNCONFINE VANUE STORVANE SI VANUE STARE STARE VANUE S	EET: 1 GEND FROMETER TEST HEAR TEST D COMPRESSION TEST R TEST VANE SHEAR ST
OSURFACE ON= 852	SAMPI	BLOW SIX IN	10 20	30 40 50	ATTERBERG H	- LIMITS 30 40 (0.0 1.0 2.0) <u>3.0 4.0 5</u>
eported 13 inches of and & Topsoil								
nd- Trace to Some Silt- Gravel- Light Brown to rown- Moist- Loose to n Dense (SP-SM/Fill)	SS1	2 3 5 6	9					
	SS3	9 8 8 10						
	SS4	10 21 22						
	SS5	8 16 16 10		Ý				
	SS6 SS7	17 16 20 20		 				
Coarse Sand- Some • Trace to Some Silt- onal Cobble & Gravel • Brown- Moist- Medium to Very Dense (SP-SM)	SS8	8 8 12		/				
	SS9	10 9 10						
	SS10	19 31 21		052-				
VEL OBSERVATIONS	SS11	21 29 31		C60	LINES ARE APPROX	IMATE IN SIT	U, THE TRANSITION	BETWEEN MATERIALS I
	SSERVATIONS ITERED DURING DRILLI TERED RILLING	SS10 SSERVATIONS ITERED DURING DRILLING RILLING	SSI0 31 21 21 29 31 35 35 31 21 29 31 35 31 29 31 31 29 31 29 31 29 31 29 31 29 31 29 31 29 31 29 31 29 31 29 31 29 31 29 31 20 31 29 31 20 31 31 31 20 31 31 20 31 31 31 31 31 31 31 31 31 31 31 31 31	SS10 31 21 21 21 29 31 21 21 29 31 21 29 31 21 29 31 21 29 31 21 29 31 21 29 31 21 29 31 21 29 31 21 29 31 21 29 31 20 20 31 21 29 31 20 20 31 20 20 31 20 20 31 20 31 20 20 31 20 20 31 20 20 31 20 20 31 20 20 31 20 20 31 20 20 31 20 20 31 20 20 31 20 20 31 20 20 31 20 20 20 20 20 20 20 20 20 20 20 20 20	SS10 31 21 21 21 21 21 21 21 21 21 23 31 21 21 23 31 21 21 29 31 20 31 20 20 20 20 20 20 20 20 20 20 20 20 20	SS10 31 21 21 21 21 21 21 21 29 31 21 29 31 20 31 21 29 31 20 31 20 31 20 31 20 31 20 31 20 20 20 20 20 20 20 20 20 20	SS10 31 21 21 21 21 21 21 21 21 21 2	SST0 31 21 21 21 21 21 21 21 21 21 21 21 21 21

RIG NO.: 26

50

3

		OCATION: ANN ARBOR, MICHIG	SAN			BY: SE		DATE: 12/22/0	5 BC	RING B6
(FEET)	SYMBOLIC	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 852	SAMPLE TYPE/NUMBER NTERVAL	BLOWS PER SIX INCHES	STANDARD PENETR TEST RESISTANCES (N-values) -	ATION 40 50	NATURAL D DENSITY – (pcf) 90 MOISTURE, ATTERBER	PRY 100 110 .% - ◆ G ⊢→ LIMITS 20 30 40	HAND PENE HAND PENE TORVANE S UNCONFINE VANE SHEA REMOLDED TRIAXIAL TI SHEAR STREI	EGEND TROMETER TEST HEAR TEST D COMPRESSION TEST R TEST VANE SHEAR EST NGTH (KSF) 0 3.0 4.0 5
35										
40 —		Fine to Coarse Sand- Some Gravel- Trace to Some Silt- Occasional Cobble & Gravel Layers- Brown- Moist- Medium Dense to Very Dense (SP-SM)	SS12	21 21 33		<u>0</u> 54 →				
45 -		Fine Sand Trace to Some Silt &	SS13	12 18 18		6				
		Gravel- Brown- Moist- Dense (SP-SM)		18			· · · · · · · · · · · · · · · · · · ·			
50 -		END OF BORING AT 50 FEET.	SS14	21 18		ð				
5 -	0									
10 - 21 - 21 11 - 21 - 21										
0-										
5-										
14 10 61						*****				
70										
¥ G ¥ G	ROUNE ROUNE PON CO	WATER LEVEL OBSERVATIONS OWATER ENCOUNTERED DURING DRILLING OWATER ENCOUNTERED OMPLETION OF DRILLING		lotes:	1. THE INDICATED STRA BE GRADUAL: 2. GROUNDWATER WAS	TIFICATION	LINES ARE API	PROXIMATE. IN SIT	U, THE TRANSITION	BETWEEN MATERIALS N

NUJEU I	NAME:					A/E:				
ROJECT	LOCATION:	ANN ARBOR, MICHIG	GAN			BY: EF	PE/EOL DATE	: 12/20/05	BOR	RING B7
	EASTING: NORTHING: GROUND SU ELEVATION	PROFILE ESCRIPTION JRFACE = 848	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD PENETRA TEST RESISTANCES (N-values)	40 50	NATURAL DRY DENSITY - (pcf) 90 100 MOISTURE, % ATTERBERG 00 10 20	110 + LIMITS 30 40	LE V HAND PENET V TORVANE SH UNCONFINEE VANE SHEAR × REMOLOED V ↓ TRIAXIAL TES SHEAR STREN 0.0 1.0 2.0	SEND ROMETER TEST EAR TEST COMPRESSION TEST TEST ANE SHEAR ST GTH (KSF) 3.0 4.0 5.
0		orted 3 inches of Sandy	1							
5-	Clayey Fin Some Silt- Gravel- Tr Dark Brow Dense (SC	e to Coarse Sand- Trace to Some ace Brick Fragments- n- Moist- Medium C/Fill)	SS1	7 8 5 6 8	9 1 9					
	2		SS3 SS4	5 8 8 10						
10-			SS5	10 12 16						
15 -			SS6 SS7	8 15 24 32 16 12	р ф	<u>></u>				
20 -	Fine to Co Some Silt Cobble & Moist- Me Extremely	arse Sand- Trace to & Gravel- Occasional Gravel Layers- Brown- dium Dense to Dense (SP-SM)	SS8	10 12 16		/				
25 -			559	25 46 40		086				
30 -			SS10	28 34 39		073⊣				
			SS11	16 20 24		¢			1 THE TRANSITION I	

RIG NO.: 26

S

PROJ	ECT N	IAME:							A/E:		·						
PROJ	ECT L	OCATION: A	ANN ARBOR, MICHIO	GAN					BY: EI	PE/EOL		E: 12/20/0	5	E	BORING	B7	
CLIER (FEET)	SYMBOLIC PROFILE	EASTING: NORTHING: GROUND SUF ELEVATION=	PROFILE SCRIPTION RFACE 848	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDA TEST RE (N-values	RD PE SISTA S) - C	NETR NCES D	ATION	NATUF DENSI (pcf) 9 MOIST ATTEF	AL DRY TY - 0 100 URE, % - RBERG H D 20	110 ← LIMITS 30 40	∨ ⊠ ● × ⊕ SH	HAND PE TORVANI UNCONFI VANE SH REMOLD TRIAXIAL EAR STF	LEGEND NETROME E SHEAR T INED COMF EAR TEST ED VANE S TEST RENGTH (2.0	Z FER TEST EST IRESSION 1 HEAR KSF) 3.0 4,	TEST
35		Fine to Coar Some Silt & Cobble & G Moist- Medir Extremely D	rse Sand- Trace to Gravel- Occasional ravel Layers- Brown- um Dense to Dense (SP-SM)														
40 -				SS12	16 20 16				\$								
45 -		Fine to Med Some Silt- 1 Moist- Dens	lium Sand- Trace to Frace Gravel- Brown- e (SP-SM)	SS13	12 17 21				 								
¥ ₽ 50 -		Fine to Coa Some Silt & Medium De END OF BC	rse Sand- Trace to Gravel- Brown- Wet- nse (SP-SM) DRING AT 50 FEET,	- SS14	10 10 16			6									
55 -																	
60 -																	
65 -																	
70		WATER LEVEL O	BSERVATIONS		Notes:	1. THE INC		D STR/	ATIFICATION	LINES AF	RE APPROS	(IMATE. IN SI	TU, THE	TRANSITI	ON BETWE	EN MATEF	RALS MA'
Ę.	GROUN GROUN UPON C	DWATER ENCOU DWATER ENCOU COMPLETION OF D		stem	Augos	2. DRILLE	R REPO				3BLES & GF	WATER I F	//PLE SS	HOURS	AFTER CO		 ON:

SIL

							12/21/05	BORING B8
	CATION: ANN ARBOR, MICHIC				PROJE	CT NUMBER: P	G51735	SHEET: 1
EPTH =EET) YMBOLIC ROFILE ROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE	AMPLE TYPE/NUMBER 4TERVAL	LOWS PER IX INCHES	STANDARD PENETRA TEST RESISTANCES (N-values) O	TION	NATURAL DRY DENSITY - (pcf) 90 100 MOISTURE, % - ATTERBERG -		LEGEND
	Driller reported 6 inches of Sandy Topsoil- Dark Brown Fine to Coarse Sand- Some Silt- Trace to Some Gravel- Dark Brown- Moist (SM/Fill)	SS1	4 5 6		40 50		30 40 0	
5-	Fine to Coarse Sand- Some Gravel- Trace to Some Silt- Brown- Moist- Loose to Medium Dense (SP-SM/Fill)	SS2	4 4 4 6 8					
10-		SS4	8 7 14 16					
		SS5	8 14 14 14					
15 -		SS6 SS7	12 9 12 14 16					
20-	Fine to Medium Sand- Trace to Some Silt & Gravel- Occasional	SS8	12 16 18	<u> </u>	<u></u>			
25-	Gravel & Cobble Layers- Brown- Moist- Medium Dense to Dense (SP-SM)	SS9	18 23 25			>		
30-		SS10	25 23 23					
		SS11	20 22 23					

RIG NO.: 26

5

CAVE OF BOREHOLE AT

ROJ	ECTN	IAME:				A/E:				
ROJ	ECTL	OCATION: ANN ARBOR, MICHI	GAN			BY: EF	E/EOL DATE	: 12/21/05	BOR	ING B8
LIEN	IT:		_			PROJE	CT NUMBER: P	G51735	SHE	ET: 2
DEPTH (FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 848	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD F TEST RESIS ⁻ (N-values) 10 20	PENETRATION TANCES	NATURAL DRY DENSITY – (pcf) 90 100 MOISTURE, % – ATTERBERG – 0 10 20	110 ♦ ⊣ LIMITS 30 40	V LEG ✓ HAND PENETR ✓ TORVANE SHE ✓ UNCONFINED (✓ VANE SHEAR T ★ REMOLDED V# ★ TRIAXIAL TEST SHEAR STRENG 0.0 0.0 1.0	END OMETER TEST AR TEST COMPRESSION TEST TEST INE SHEAR ITH (KSF) 3.0 4.0 5.
35		Fine to Medium Sand- Trace to								
3		Gravel & Cobble Layers- Brown- Moist- Medium Dense to Dense (SP-SM)		12		/				
1			SS12	19 20		6				1.01
40 -				20						
1		Some Silt- Trace Gravel- Brown-		9						****
45 -		Moist to Wet- Dense (SP-SM)	SS13	17 20						
꼬										
								200		
5										
-			SS14	12 15		J		1000		
50 -	24266	END OF BORING AT 50 FEET.		24						
2										
55 -										
00										
			6							
2										
2										
60 -	_							_		
2										
2										
65 -										
2										
5										
70		WATER LEVEL OBSERVATIONS		lotes:	1. THE INDICAT	ED STRATIFICATION	INES ARE APPROXI	MATE IN SITU	J, THE TRANSITION BE	TWEEN MATERIALS M
\ \ \ \ \ \ \ \ \ \ \	GROUN	DWATER ENCOUNTERED DURING DRILLING	3		BE GRADUAL 2. DRILLER REF	PORTED ENCOUNTER	ING COBBLES & GRA	VEL AT SAMP	LES SS2, SS3 & SS10.	
i	JPON C	OMPLETION OF DRILLING								
ILL	ER: R	M DRILL METHOD: Hollow-	stem A	Augers	WATER LE		LING: 45 W	ATER LEVE	L HOURS AFTE	R COMPLETION:

RIG NO.: 26

S

BACKFILL METHOD: Auger Cuttings WATER LEVEL UPON COMPLETION: 46

CAVE OF BOREHOLE AT

								Pipe Lengths	Pipe Length at	Penetration Depth
Project Name:		350 South Fifth Avenue Redevelopment				Constants	Area (in²)	(ft)	Start Test (ft)	of Rings (in)
Project Number:		84868.01		•		Inner Ring	12.56	10.00	9.79	2.50
Test Location:		IT-1		Tested By:	KPA	Annular Space	28.26	9.70	9.49	2.50
Surface Elev., ft:				G.W. Elev, ft:	N/E	Water level maintained by: Hose and Buckets				
Test Elev., ft:		ļ		Test Depth, ft:	10.0'					-
								Infiltration Rate		Remarks
					Inner Ring		Anular Space	Inner	Annular	
				Inner Ring	Infiltrated	Annular Space	Infiltrated	Infiltration,	Infiltration,	Test Conditions,
Trial #	Start / End	Date	Time	Reading, ft	Water, ft	Reading, ft	Water, ft	inches/hour	inches/hour	etc
	Start Test	1/10/2023	12:25	1.09		1.09				Subsurface
1	End Test	1/10/2023	12:35	0.95	0.14	0.94	0.15	10.1	10.8	Conditions at Test
	Start Test	1/10/2023	12:35	1.10		1.08				Depth: FILL - Fine
2	End Test	1/10/2023	12:45	0.96	0.14	0.94	0.14	10.1	10.1	to Coarse Sand with
	Start Test	1/10/2023	12:45	1.09		1.08				Silt and Gravel -
3	End Test	1/10/2023	12:55	0.98	0.11	0.98	0.10	7.9	7.2	Few Concrete
	Start Test	1/10/2023	12:55	0.98		0.98	4			Fragments - Brown -
4	End Test	1/10/2023	13:05	0.90	0.08	0.89	0.09	5.8	6.5	Moist - Medium
_	Start Test	1/10/2023	13:05	1.08		1.09				Dense (SP-SM).
5	End Test	1/10/2023	13:15	0.98	0.10	0.99	0.10	7.2	7.2	Groundwater was
	Start Test	1/10/2023	13:15	0.98		0.99				not encountered.
6	End lest	1/10/2023	13:25	0.87	0.11	0.88	0.11	7.9	7.9	
_	Start Test	1/10/2023	13:25	1.10	0.40	1.10				
/	End lest	1/10/2023	13:35	0.98	0.12	0.98	0.12	8.6	8.0	
•	Start Test	1/10/2023	13:35	0.97	0.40	0.99	0.11		7.0	
8	End lest	1/10/2023	13:45	0.85	0.12	0.88	0.11	8.6	7.9	
0							+			
9	End Test									
10	End Test						+			
10	Start Test									
11	End Test						+			
	Start Tost									
12	End Test						ł			
12	End Test						ł			

NOTES: The test area was presoaked with a minimum of 12 inches of water for 1 hour prior to testing. The drop in the water level during the last 30 minutes of the presoaking was greater than two inches, so 10 minute measurement intervals were used for testing as recommended in the Low Impact Devolopment Manual for Michigan.

Project Name: 350 South Fifth Ave Redevelopment Project Location: Ann Arbor, Michigan SME Project No.: 084868.01 Test Date: January 7, 2023

Boring No.: B6 Test Depth: 29-31 feet Soil Description: Fine to Coarse Sand with Gravel Standard Penetration Test Blow Counts: 16-11-10 (N60=29) USCS Symbol: SP

Initial Pressure (Pi): 5.2 tsf

Yield Pressure (Pf): 24.1 tsf

Limit Pressure (PI): Could not be determined from test data.

Pressuremeter Modulus (Ed): 238 tsf

Project Name: 350 South Fifth Ave Redevelopment Project Location: Ann Arbor, Michigan SME Project No.: 084868.01 Test Date: January 7, 2023

Boring No.: B6 Test Depth: 34-36 feet Soil Description: Fine to Coarse Sand with Gravel Standard Penetration Test Blow Counts: 23-22-23 (N60=62) USCS Symbol: SP

Initial Pressure (Pi): 7.1 tsf

Yield Pressure (Pf): 23.2 tsf

Limit Pressure (PI): Could not be determined from test data.

Pressuremeter Modulus (Ed): 249 tsf

Project Name: 350 South Fifth Ave Redevelopment Project Location: Ann Arbor, Michigan SME Project No.: 084868.01 Test Date: January 6, 2023

Boring No.: B7 Test Depth: 19-21 feet Soil Description: Fine to Coarse Sand with Gravel Standard Penetration Test Blow Counts: 9-8-10 (N60=25) USCS Symbol: SP

Pressure (tsf)

Initial Pressure (Pi): 5.1 tsf

Yield Pressure (Pf): 18.0 tsf

Limit Pressure (PI): Could not be determined from test data.

Pressuremeter Modulus (Ed): 160 tsf

Project Name: 350 South Fifth Ave Redevelopment Project Location: Ann Arbor, Michigan SME Project No.: 084868.01 Test Date: January 6, 2023

Boring No.: B7 Test Depth: 24-26 feet Soil Description: Fine to Coarse Sand - Few Sandstone Fragments Standard Penetration Test Blow Counts: 14-13-16 (N60=40) USCS Symbol: SP

Pressure (tsf)

Initial Pressure (Pi): 5.9 tsf Yield Pressure (Pf): 21.0 tsf Limit Pressure (PI): 50 tsf Pressuremeter Modulus (Ed): 369 tsf

Project Name: 350 South Fifth Ave Redevelopment Project Location: Ann Arbor, Michigan SME Project No.: 084868.01 Test Date: January 6, 2023

Boring No.: B7 Test Depth: 29-31 feet Soil Description: Fine to Coarse Sand with Gravel Standard Penetration Test Blow Counts: 12-12-15 (N60=37) USCS Symbol: SP

Initial Pressure (Pi): 6.7 tsf Yield Pressure (Pf): 20.3 tsf Limit Pressure (PI): 48 tsf Pressuremeter Modulus (Ed): 302 tsf

Project Name: 350 South Fifth Ave Redevelopment Project Location: Ann Arbor, Michigan SME Project No.: 084868.01 Test Date: January 6, 2023

Boring No.: B7 Test Depth: 34-36 feet Soil Description: Fine to Coarse Sand with Gravel Standard Penetration Test Blow Counts: 20-26-28 (N60=74) USCS Symbol: SP

Initial Pressure (Pi): 8.1 tsf

Yield Pressure (Pf): 31.4 tsf

Limit Pressure (PI): Could not be determined from test data.

Pressuremeter Modulus (Ed): 432 tsf

Project Name: 350 South Fifth Ave Redevelopment Project Location: Ann Arbor, Michigan SME Project No.: 084868.01 Test Date: January 5, 2023

Boring No.: B9 Test Depth: 19-21 feet Soil Description: Fine to Coarse Sand with Gravel Standard Penetration Test Blow Counts: 5-6-8-8 (N60=19) USCS Symbol: SP

Initial Pressure (Pi): 3.2 tsf Yield Pressure (Pf): 12.1 tsf Limit Pressure (PI): 25 tsf Pressuremeter Modulus (Ed): 132 tsf

Project Name: 350 South Fifth Ave Redevelopment Project Location: Ann Arbor, Michigan SME Project No.: 084868.01 Test Date: January 5, 2023

Boring No.: B9 Test Depth: 24-26 feet Soil Description: Fine to Coarse Sand with Gravel Standard Penetration Test Blow Counts: 15-14-17 (N60=42) USCS Symbol: SP

Pressure (tsf)

Initial Pressure (Pi): 7.7 tsf Yield Pressure (Pf): 26.5 tsf Limit Pressure (PI): Could not be determined from test data.

Pressuremeter Modulus (Ed): 541 tsf

APPENDIX B

IMPORTANT INFORMATION ABOUT THIS GEOTECHNICAL-ENGINEERING REPORT GENERAL COMMENTS

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will <u>not</u> be adequate to develop geotechnical design recommendations for the project.

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept* responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform constructionphase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note* conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures.* If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will <u>not</u> of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are <u>not</u> building-envelope or mold specialists.

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent

GENERAL COMMENTS

BASIS OF GEOTECHNICAL REPORT

This report has been prepared in accordance with generally accepted geotechnical engineering practices to assist in the design and/or evaluation of this project. If the project plans, design criteria, and other project information referenced in this report and utilized by SME to prepare our recommendations are changed, the conclusions and recommendations contained in this report are not considered valid unless the changes are reviewed, and the conclusions and recommendations of this report are modified or approved in writing by our office.

The discussions and recommendations submitted in this report are based on the available project information, described in this report, and the geotechnical data obtained from the field exploration at the locations indicated in the report. Variations in the soil and groundwater conditions commonly occur between or away from sampling locations. The nature and extent of the variations may not become evident until the time of construction. If significant variations are observed during construction, SME should be contacted to reevaluate the recommendations of this report. SME should be retained to continue our services through construction to observe and evaluate the actual subsurface conditions relative to the recommendations made in this report.

In the process of obtaining and testing samples and preparing this report, procedures are followed that represent reasonable and accepted practice in the field of soil and foundation engineering. Specifically, field logs are prepared during the field exploration that describe field occurrences, sampling locations, and other information. Samples obtained in the field are frequently subjected to additional testing and reclassification in the laboratory and differences may exist between the field logs and the report logs. The engineer preparing the report reviews the field logs, laboratory classifications, and test data and then prepares the report logs. Our recommendations are based on the contents of the report logs and the information contained therein.

REVIEW OF DESIGN DETAILS, PLANS, AND SPECIFICATIONS

SME should be retained to review the design details, project plans, and specifications to verify those documents are consistent with the recommendations contained in this report.

REVIEW OF REPORT INFORMATION WITH PROJECT TEAM

Implementation of our recommendations may affect the design, construction, and performance of the proposed improvements, along with the potential inherent risks involved with the proposed construction. The client and key members of the design team, including SME, should discuss the issues covered in this report so that the issues are understood and applied in a manner consistent with the owner's budget, tolerance of risk, and expectations for performance and maintenance.

FIELD VERIFICATION OF GEOTECHNICAL CONDITIONS

SME should be retained to verify the recommendations of this report are properly implemented during construction. This may avoid misinterpretation of our recommendations by other parties and will allow us to review and modify our recommendations if variations in the site subsurface conditions are encountered.

PROJECT INFORMATION FOR CONTRACTOR

This report and any future addenda or other reports regarding this site should be made available to prospective contractors prior to submitting their proposals for their information only and to supply them with facts relative to the subsurface evaluation and laboratory test results. If the selected contractor encounters subsurface conditions during construction, which differ from those presented in this report, the contractor should promptly describe the nature and extent of the differing conditions in writing and SME should be notified so that we can verify those conditions. The construction contract should include provisions for dealing with differing conditions and contingency funds should be reserved for potential problems during earthwork and foundation construction. We would be pleased to assist you in developing the contract provisions based on our experience.

The contractor should be prepared to handle environmental conditions encountered at this site, which may affect the excavation, removal, or disposal of soil; dewatering of excavations; and health and safety of workers. Any Environmental Assessment reports prepared for this site should be made available for review by bidders and the successful contractor.

THIRD PARTY RELIANCE/REUSE OF THIS REPORT

This report has been prepared solely for the use of our Client for the project specifically described in this report. This report cannot be relied upon by other parties not involved in the project, unless specifically allowed by SME in writing. SME also is not responsible for the interpretation by other parties of the geotechnical data and the recommendations provided herein.

Passionate People Building and Revitalizing our World

