

LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT

ANN ARBOR AFFORDABLE HOUSING CORP.
2050 S INDUSTRIAL HWY, ANN ARBOR, WASHTENAW COUNTY, MI
Atlas Report No. 188EM22001.01

PREPARED FOR:

Jennifer Hall Ann Arbor Affordable Housing Corp. 2000 S Industrial Highway Ann Arbor, Michigan 48104

PREPARED BY:

Atlas Technical Consultants LLC 46555 Humboldt Drive, Suite 100 Novi, Michigan 48377

June 6, 2022

Ms. Jennifer Hall

ANN ARBOR AFFORDABLE HOUSING CORP.

2000 S Industrial Highway

Ann Arbor, Michigan 48104

Subject: Limited Phase II Environmental Site Assessment

Ann Arbor Affordable Housing Corp.

2050 S Industrial Hwy., Ann Arbor, Washtenaw County, MI

Atlas Report No. 188EM22001.01

Dear Ms. Hall:

Atlas has completed a Limited Phase II Environmental Site Assessment (ESA) for the referenced Site (Subject Property). The attached report documents the results of Atlas's investigation with respect to the potential for the presence of environmental concerns at the Subject Property. The findings and conclusions of this report are subject to the specified limitations outlined therein.

Atlas is pleased to be of service to you. As a partner in business, we recognize the importance of working closely with our clients to provide effective solutions. If you should have any questions or require additional services, feel free to contact us as (989) 745-6595.

Sincerely,

Atlas Technical Consultants LLC

Gerard WeBusschere, CPG

Senior Project Manager

Ann O'Brien

Due Diligence Manager

CONTENTS

EXI	=CU11	IVE SUN	//MARY	1
1.	INTR	ODUCT	TON	3
	1.1	Backgro	ound	3
	1.2	Purpos	e	6
	1.3	Special	Terms and Conditions	6
	1.4	Limitation	ons and Exceptions of the Assessment	6
	1.5	Limiting	Conditions and Methodology Used	7
	1.6	Report	Reliance	8
2.	SITE	DESCR	RIPTION	9
	2.1	Subject	Property and Vicinity Characteristics	9
	2.2	Summa	ary of Historical Uses	9
	2.3	Hydrog	eological Setting	.10
	2.4	Ground	water Use	.11
3.	SUB	SURFAC	CE INVESTIGATION	.12
	3.1	Miss Di	g	.12
	3.2	Scope of	of Assessment	.12
		3.2.1	Supplemental Record Review	.12
		3.2.2	Areas of Concern	.12
		3.2.3	Deviations from the Work Plan	.13
	3.3	Soil Bo	rings	.13
	3.4	Samplin	ng Protocol	.14
		3.4.1	Soils	.14
		3.4.2	Groundwater	.14
		3.4.3	Soil-Gas	.14
	3.5	Quality	Assurance/Quality Control	.15
		3.5.1	Decontamination of Equipment	.15
		3.5.2	Calibration of Field Equipment	.15
		3.5.3	Documentation of Activities	.15
		3.5.4	Sample Preservation Techniques	.16
		3.5.5	QA/QC Sampling	
	3.6		tory Analyses and Methods	
4.	RESI	JLTS OF	SUBSURFACE INVESTIGATION	.17
	4.1	Geophy	/sical Survey	.13
	4.2	Site Hy	drogeology	.17
	4.3	Analytic	cal Results	.18
5 .	CON	CLUSIO	NS AND RECOMMENDATIONS	.23
6.	REFI	ERENCE	S	.25

Appendix D

TABLES		
Table 2 - Ana	llytical Results Summary: Soil llytical Results Summary: Groundwater llytical Results Summary: Soil Gas	
FIGURES		
· ·	bject Property Location Map	
•	mple Location Map alytical Results Summary: Soil	
•	alytical Results Summary: Groundwater	r
-	alytical Results Summary: Soil Gas	
APPENDICI	≣S	
Appendix A	Atlas Credentials	
Appendix B	FMCI Geophysical Survey	
Appendix C	Soil Boring Logs	

Laboratory Analytical Reports

7. SIGNATURES OF ENVIRONMENTAL PROFESSIONALS.......26

EXECUTIVE SUMMARY

Atlas Technical Consultants (Atlas) has been retained by Ann Arbor Affordable Housing Corporation (AAAHC) to perform a Limited Phase II Environmental Site Assessment (ESA) at the 2050 S Industrial building (Subject Property), part of a larger parcel identified as 2000 S Industrial Highway, Ann Arbor, Washtenaw County, Michigan.

Atlas prepared a Phase I ESA for the Subject Property in March 2022 (Atlas Report No. 188DD22012, March 10, 2022). As a result of that assessment, Atlas identified *Recognized Environmental Conditions (RECs)* and potential environmental concerns that could present an adverse environmental impact to the Subject Property. Specifically, Atlas identified the following *RECs and/or Historical Recognized Environmental Conditions (HRECs)* with respect to the Subject Property:

Summary of Findings

The following provides a summary of the findings from this Limited Phase II ESA:

- A geophysical survey was performed on the Subject Property in the area of the proposed soil borings, (work area) by Facility Management Consultants International (FMCI) to clear soilboring locations and to locate potential buried structures and/or buried utilities utilizing groundpenetrating radar (GPR) and electromagnetic (EM) methods.
- Atlas advanced six (6) soil borings to varying depths to evaluate the RECs identified above.
 Soil samples were collected continuously for soil characterization and field screening for VOCs utilizing a PID device. One soil sample was collected from each soil boring and submitted for laboratory analysis.
- Atlas noted that the odor on the north side of the 2050 building seemed to originate from the storm-water catch basin located in that area, therefore, one sediment sample was collected from the catch basin.
- Groundwater was encountered at an average depth of 5-feet below grade. One water sample
 was collected from the catch basin, and from five of the six soil borings (water was not
 encountered in soil boring HA-1). The water samples were submitted for laboratory analysis.
- Atlas installed six (6) soil-gas sampling points, and collected six (6) soil gas samples for laboratory analysis.
- Laboratory analyses consisted of the following:
 - Volatile organic Compounds (VOCs, soil/water)) by USEPA analytical method 8260,
 - Soil-gas VOCs by USEPA analytical method TO-15
 - Semi-volatile organic compounds (SVOCs) by USEPA 8270,
 - EGLE list of ten hazardous metals (MI-10) by USEPA 7010/7470, and
 - Total Petroleum hydrocarbons:
 - Gasoline Range Organics (GRO) by USEPA 8015/8260,

- Diesel Range Organics (DRO) by USEPA 8015/8270, and
- Oil Range Organics (ORO) by USEPA 8015/8270
- Soil and groundwater laboratory results were compared to Part 201 Generic Residential Clean-up Criteria (GRCC).
- Soil-gas laboratory results were compared to the non-residential, site specific, volatilization to indoor air criteria (SSVIAC_{NR}) previously prepared by EGLE for the site and/or the generic media specific (volatilization to indoor air) screening levels (MSSLs)
- The soil analytical results indicated that, with the exception of soil samples GP/TMW-3 and GP/TMW-4, VOCs and SVOCs were not detected in the soil above laboratory detection limits.
 - VOCs <u>benzene</u>, <u>n-butylbenzene</u>, sec-butylbenzene, ethylbenzene, <u>isopropyl benzene</u>, <u>2-methylnaphthalene</u>, <u>naphthalene</u> and/or <u>n-propylbenzene</u> and SVOCs benzo(k)fluoranthene, fluoranthene, 2-methylnaphthalene, naphthalene, phenanthrene and pyrene were detected in the GP/TMW-3 and GP/TMW-4 samples, however, only the underlined were found to exceed either the Part 201 GRCC, or SSVIAC_{NR}/MSSL
 - The MI-10 metals arsenic, barium, chromium, copper, lead and zinc were detected at various concentrations in the samples analyzed. It is Atlas' opinion that all are most likely "naturally occurring" at the Site.
- The groundwater analytical results indicate that, with the exception of water samples GP/TMW-1, GP/TMW-3 and GP/TMW-4, VOCs and SVOCs were not detected in groundwater above laboratory detection limits.
 - VOCs <u>benzene</u>, n-butylbenzene, sec-butylbenzene, ethylbenzene, <u>isopropyl benzene</u>, <u>2-methylnaphthalene</u>, <u>naphthalene</u>, n-propylbenzene, <u>toluene</u> and/or 1,2,4-trimethylbenzene (TMB) and SVOCs 2-methylnaphthalene and naphthalene were detected in the GP/TMW1, GP/TMW-3 and/or GP/TMW-4 samples, however, only the underlined were found to exceed either the Part 201 GRCC, or SSVIAC_{NR}/MSSL
- The soil-gas analytical results indicated that VOCs were detected in the soil-gas samples; however, none was found to exceed regulatory limits.

Based on the findings of this subsurface investigation, the Subject Property meets the definition of a "facility" as that term is defined by Part 201 of the Natural Resources and Environmental Protection Act (NREPA), PA 451 of 1994, as amended (Part 201). Accordingly, Atlas recommends that when the AAAHC decides to move forward with acquisition of the property, a Baseline Environmental Assessment (BEA) be performed in accordance with Part 201. The BEA will need to be completed within 45 days (before or after) the purchase, occupancy, or foreclosure by the new entity and submitted to the EGLE within six months of the purchase, occupancy, or foreclosure date. Atlas notes that the owner or operator of a "facility" will also assume due care obligations in accordance with Part 201. Accordingly, a due care plan is recommended.

Atlas notes that this executive summary is not intended to be a stand-alone document and it is strongly recommended that the Limited Phase II ESA report be read in its entirety.

1. INTRODUCTION

Atlas was retained by Ann Arbor Affordable Housing Corp. (AAAHC) to conduct a Limited Phase II ESA on the 2050 S Industrial Hwy building (Subject Property), part of a larger parcel located at 2000 S Industrial Highway, Ann Arbor, Washtenaw County, Michigan. The field investigation was conducted under the supervision of Ms. Ryann Scott and Ms. Madelyn Haas, and this report was prepared by Mr. Gerard DeBusschere, CPG and reviewed by Ms. Ann O'Brien, all of Atlas. Their credentials are provided in **Appendix A**.

1.1 Background

Based on information obtained from a Phase I Environmental Site Assessment (ESA) performed at the Subject Property in March 2022 by Atlas, the following *RECs* and *HRECs* were identified:

Recognized Environmental Conditions

- 1. A petroleum odor was noted within the exterior northern entrance area of the building addressed as 2050 South Industrial Highway. No apparent visual indications of the presence of areas of significantly stained soil or pavement were observed in this area, however, based on the historical presence of underground storage tanks (USTs), orphan UST, and lack of pertinent supporting UST documentation associated with the on-site USTs, the potential exists for this area to contain an abandoned UST and is considered to be a REC.
- 2. The former use of the 2050 S Industrial (2050 building) and the shed attached to the 2000 S. Industrial Highway building as garage/repair shop facilities from 1957 to 2010 is considered to be a REC. This is based on typical use of petroleum products and generation of waste along with the use of sub-surface features identified within the building. Features of specific concern include two below-grade hydraulic hoists (which appear to have been removed); spray paint booth and multiple trench and/or round floor drains throughout the buildings.
- 3. The Subject Property has been historically occupied by a recycling center, which accepted hazardous materials such as oil and batteries. An oil and battery containment structure is associated with 2050 S. Industrial within the Subject Property and is considered to be a REC based on unknown housekeeping activities and likely spills/releases.
- 4. Based on the Closure Report for the City of Ann Arbor Fuel Farm (Atlas, October 25, 2021), the site lithology generally consists of fill material consisting of sand, gravel, clay, concrete, and brick debris from depths varying from 5 to 13 feet bsg with native materials consisting of sand, silty-sand, and clay to the maximum depth investigated of 25 feet. In addition, the County Drain Commission and Water Department utilize the Subject Property. Soil stockpiles with debris (i.e., concrete and asphalt) were observed within the southern portion of the Subject Property. The presence of a significant amount of fill material from an unknown origin is considered to be a REC.

- 5. Historical railroad tracks/spurs were located within the northwestern portion of the Subject Property. Railroad tracks are typically constructed of unknown fill that presents a potential for introducing contaminated material to the vicinity. In addition, railroad ties are often treated with creosote and/or oils, and herbicides and/or oils are used to control encroaching vegetation. Therefore, the presence of the historic railroad track/spur has the potential to adversely impact the natural resources of the Subject Property is considered to be a REC.
- 6. Previous subsurface investigations conducted in 2021 at the Subject Property has documented soil contamination on the Subject Property. The contamination is generally at the southeastern portion of the main building 2000 S. Industrial. This contamination is associated with a former heating oil underground storage tank UST and is considered to be a REC.
- 7. Building records indicate three 20,000-gallon fuel oil USTs were installed in 1955 are considered to be a REC because no removal information or closure sampling data was available.
- 8. One 1,000-gallon diesel UST, one 2,000-gallon diesel UST, and one 2,000-gallon gasoline UST with unknown installation dates removed in 1992 are associated with the Subject Property. In addition, Fire Department records indicate two 1,500-gallon gasoline and one 1,500-gallon diesel tanks were associated with the Subject Property in 1958. These USTs/tanks are considered to be a REC because no closure information or sampling data was available.
- 9. The Subject Property is developed with a 4.2 million gallon reservoir constructed in 1967. Based on the age of the reservoir the potential exists for lead-based paint to have been utilized on the structure. The structure was reportedly sandblasted and repainted in 1994. The potential exists for elevated levels of lead to be present in the soils at the base of the reservoir and is considered to be a REC.
- 10. The western adjoining properties located at 2115 and 2141 South State Street have been occupied by automotive repair shops/gas stations/fuel oil dealers from 1971 until 2014 which are considered to be a recognized environmental condition. Specific environmental concerns include automotive service/repair, collision shop and auto washing operations along with storage of significant quantities of chemicals/petroleum products and wastes, open and closed LUST incidents, with documented contamination in soil and/or groundwater present. The potential for releases and lack of data regarding potential adverse impacts offsite to the Subject Property is considered to represent a vapor encroachment condition (VEC) and a REC.

Historical Recognized Environmental Conditions

 A Corrective Action Notice to Register of Deeds, Michigan Department of Environmental Quality (MDEQ) – Underground Storage Tank Division, of 2000 South Industrial Highway, dated June 4, 1997 indicating the land use corrective action at the site is as follows;

Commercial III restrictions utilization of the groundwater resources and underground utility/construction activities in localized area of impacted soils.

- 2. One 12,000-gallon gasoline UST installed 1979 and one 12,000-gallon gasoline UST installed 1980 removed in 1992 are associated with the Subject Property. Two confirmed "closed" LUST incidents dated September 14 and 15, 1992 are associated with these USTs. Regulatory database documentation indicated that closure of the site was completed to regulatory criteria as of June 16, 1997. As such, the 1992 UST releases are considered to be a historical recognized environmental condition HREC.
- 3. The Subject Property is identified on the ERNS database. Incident #337490 was from a 1,000-gallon a fuel oil spill from an open valve on an aboveground storage tank on construction site dated April 21, 1994. Approximately 750-gallons of diesel fuel was released, impacting a storm drain, the Huron River, and basin located a mile away. Regulatory documentation indicated that BTEX and PNA contamination from the diesel spill has been remediated via excavation and proper disposal and the incident is considered closed at the site. As such, the 1994 AST release is considered to be an HREC.
- 4. A Closure Report for the City of Ann Arbor Fuel Farm for the Subject Property, dated October 21, 2021 indicated a suspected release associated with the removal of the UST system (one 15,000-gallon gasoline, one 15,000-diesel, and dispenser island) was reported June 29, 2020. The primary source of the release was suspected to be from the dispenser locations due to soil impact observed at shallow sample locations collected 3 feet bsg underneath the former dispenser area. The area where the dispensers were located were subsequently excavated to 4 feet bsg removing the impacted soil and disposed of at Woodland Meadows Landfill. In summary, the impacted areas were excavated and removed from the site and the area resampled indicating soil samples were below Part 213 Risk Based Screening Levels (RBSLs) and groundwater sampling indicated no impact in any monitoring wells. Furthermore, the Department of Environment, Great Lakes, and Energy issued a Notice of Closure Report Considered Approved, dated February 18, 2022, for the confirmed release. Based on the above, historical site uses represent a (HREC) for the Subject Property.

Report Limitations

This Limited Phase II ESA was performed to assess current Subject Property conditions and to determine if the Subject Property meets the definition of a "facility" as that term is defined in accordance with Part 201 of the Natural Resources and Environmental Protection Act (NREPA), PA 451 of 1994, as amended (Part 201). As such, this report is subject to the following limitations:

- 1. At the present time, the AAAHC's primary concern is with the odor related to the 2050 building, and Atlas focused the scope of this investigation in that area, specifically:
 - REC #1 Petroleum odor near north manway, 2050 building.
 - REC #2 Use of 2050 building as an automotive garage/repair shop

- REC #3 Oil and battery containment structure 2050 building.
- REC #7 & #8 Building and Fire Department records indicate the presence of USTs with no record of removal.
- 2. REC #6 above is currently being investigated, and was not addressed as part of this investigation.
- 3. AAAHC indicated that its plans to acquire the property are 2-3 years into the future, and it will address the following RECs at that time:
 - REC #2 Use of shed attached to 2000 building as an automotive garage/repair shop,
 - REC #4 The presence of a significant amount of fill material from an unknown origin in areas not related to the 2050 building,
 - o REC #5 The former presence of a railroad spur on the property,
 - o REC #9 Lead based paint issues related to the water storage reservoir, and
 - REC #10 The potential for contamination originating on west adjacent properties to have impacted the Subject Property.

1.2 Purpose

The objective of this Limited Phase II ESA was to evaluate the subset of RECs identified by the Phase I ESA and outlined in §1.1 above. The scope of work for the Limited Phase II ESA was designed to evaluate the Subject Property for the presence of environmental impacts, and if present, determine if contaminant concentrations exceed Part 201 criteria. Based on intended future developments and current commercial use of the surrounding properties Residential Part 201 Generic Cleanup Criteria and Screening Levels/Part 213 Risk-Based Screening Levels (December 30, 2013, GSI Protection Criteria Updated June 25, 2018; updated December 21, 2020) were used.

This report was performed to satisfy one of the requirements to qualify for the innocent landowner defense under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and under Part 201. This report satisfies the "all appropriate inquiry" element as defined in 42 U.S.C.A. §9601(35)(B), where a previous assessment satisfying that element identified RECs.

1.3 Special Terms and Conditions

This Limited Phase II ESA was conducted under the terms and conditions outlined in Atlas Proposal Number 22-03738 dated March 24, 2022.

1.4 Limitations and Exceptions of the Assessment

Atlas notes the following limitations or exceptions in completing this Limited Phase II ESA:

- As noted above, the purpose of Atlas's Limited Phase II ESA was to identify specific conditions based on the subset of *RECs* identified during the March 2022 Phase I ESA and outlined in §1.1 above. The scope was not intended to delineate the extent of contamination at the Subject Property.
- The purpose of Atlas's Limited Phase II ESA was not intended to evaluate the Subject Property for compliance with due care obligations.
- Nothing in this report constitutes a legal opinion or legal advice. For information regarding individual or organizational liability, Atlas recommends consultation with independent legal counsel.

No environmental site assessment or investigation can wholly eliminate uncertainty regarding the potential for environmental concerns in connection with the Subject Property. The findings of this report must not be considered as scientific certainties, but rather as Atlas's professional opinion concerning the significance of the limited data gathered during the course of this and the previous assessments, investigations, and remediation activities. Maps used in this report are included to aid the visual understanding of the reader, and should not be considered legal surveys or engineering studies.

Any sample, either surface or subsurface, taken for laboratory analysis may or may not be representative of a larger population. Professional judgment and interpretation are inherent in the process and uncertainty is inevitable. No other warranty, expressed or implied, is made. The scope of work completed by Atlas in this ESA was based solely on the information obtained from the current and previous assessments.

In preparing this report, Atlas has made no attempt to independently verify the quality assurance and quality control (QA/QC) procedures of the laboratory beyond the QA/QC procedures indicated in Sections 4.6 and 6.3. However, Atlas did not detect any inconsistency or omission of a nature that might call into question the validity of any of the information contained in this report.

1.5 Limiting Conditions and Methodology Used

There were no limiting conditions encountered during the completion of this Limited Phase II ESA beyond those described in §1.1 through §1.4 above. The following methodologies were utilized during completion of the Limited Phase II ESA:

Activity	Method or Guidance						
Geoprobe [®] Drilling	ASTM D-6282-98						
Soil Classification	ASTM D-2488						
Soil Sampling	SW846 Method 5035						
Groundwater Sampling	ASTM D-6771-21						
Soil-Gas Sampling	ASTM D-7663-18-E1						
Sample Collection, Handling and Transportation	Atlas Standard Operating Procedures						

1.6 Report Reliance

This report has been prepared for the exclusive use of Ann Arbor Affordable Housing Corporation who may use and rely upon this report. Atlas represents that within the limitations of the agreed upon scope of work, this work has been undertaken and performed in a professional manner, in accordance with generally accepted practices, using the degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. This Limited Phase II ESA may not be relied upon by other parties without the express written consent of Atlas.

2. SITE DESCRIPTION

The Subject Property is identified as follows:

Address: 2000 S Industrial Hwy., Ann Arbor, MI 48104

Parcel No.: 09-12-04-200-013

Total Land Area 7,700-SF pole building (2050 Building) and a 4.2-Mgal water

reservoir.

Latitude/Longitude: 42.25525 N, -83.73657 W

Current Owner: Ann Arbor Water Treatment

Current Use: City utilities maintenance facility

2.1 Subject Property and Vicinity Characteristics

The Subject Property is located in Section 4, Township 3 South, Range 6 East, in City of Ann Arbor (Pittsfield Township), Washtenaw County, Michigan, on the west side of South Industrial Highway, between Astor Avenue and Rosewood Street. A Site Location Map is attached as Figures 1.

The Subject Property is located in an area generally characterized by commercial, industrial, and residential properties and roadways. The surface topography across the Subject Property is relatively flat, and the surrounding area is gently sloping from the west to east.

The Subject Property consists of approximately 1-acre adjacent to the 2050 building, a portion of the 4.09 acres of land developed with a 9,100-square foot commercial office/warehouse building and a 7,700-square foot pole building. The remainder of the Subject Property consists of a water treatment tank, two aboveground storage tanks with dispensers, and parking lots.

In addition to the AAAHC, the Subject Property is currently occupied by Ann Arbor Water Treatment Plant, the Ann Arbor Fire Department, the Washtenaw Drain Commission, CTN TV, the Ann Arbor Police Department, Ann Arbor Fleet Services, and Ann Arbor furniture.

2.2 Summary of Historical Uses

Review of the Atlas Phase I ESA indicates that the property consisted of vacant undeveloped land from at least 1906 until the 1930's when the Subject Property was improved with farmstead/nursery structures on the northwestern and southern portions of the property. The nursery structures were demolished and the property was improved with commercial structures in the early 1950s.

The subject property has been occupied by City of Ann Arbor entities (i.e., water department, AAAHC, police and fire department, etc.) since 1964 with garage and repair shops and the use remained as such through circa 2010. Ecology Center recycling has also occupied the Subject

Property from the 1980s through 1997 with Re-Use/Recycling in Ann Arbor accepting recycling in 2021.

2.3 Hydrogeological Setting

Atlas reviewed available resources to determine the hydrogeological setting of the site. Reference sources include *Quaternary Geology of Southern Michigan* (Farrand, W.R. and Bell, D.L., 1982), *Bedrock Geology of Michigan* (Segal, T.E., Wilson, S.E. and Milstein, R.L., 1987), *Stratigraphic Cross-Sections of the Michigan Basin* (Lilienthal, R.T., 1978), Drift Thickness Map (Akers, J, 1938), United States Department of Agriculture (USDA) Web Soil Survey, United States Geological Service (USGS) "Ann Arbor East, Michigan" Topographic Map (1983), and previous environmental assessments for the Subject Property.

Review of the "Ann Arbor East, Michigan" topographic map (1983) indicates that the Subject Property is located at an elevation of approximately 833-feet to 1,050 feet above mean sea level. The site and surrounding area consists of generally flat to low sloping land. Generally, the topography of the Subject Property flat to low slope to the east.

According to the Michigan Geological Survey Division's publication, Quaternary Geology of Southern Michigan, soils in the area consist of glacial outwash sand and glacial and post glacial alluvium. These soils are pale brown to pale reddish brown, with fine to coarse sand alternating with layers of small gravel to heavy cobbles, with a mixed lithology of sedimentary, igneous, and metamorphic rocks. The soils are well to poorly sorted, well stratified, and, in places, cross-bedded, generally occurring as fans, as sheets of flanking end moraines and/or as deltas along glacial lake margins and in fluvial terraces along present and abandoned drainage ways. This matrix includes narrow belts of Holocene alluvium inset below outwash terraces alongside present streams.

The site geology was observed as part of the 2021 Closure Report (Atlas Report No. 188EM20011.03, October 25, 2021) and Soil and Groundwater Investigation Report (Atlas Report No. 188EM21004.01, January 7, 2022). In general, brown sandy clay was encountered from surface to a depth of 5-6 feet below grade (bg). Brown, fine to medium grained sand was encountered underlying the sandy clay to a depth of 10-15 feet bg. Hard brown clay was then encountered to the maximum depth of investigation at 20 feet bg. Saturated conditions were encountered at an average depth of 4-feet bg.

According to the USDA Web Soil Survey, two soil types are present across the Subject Property, Matherton sandy loam, 0 to 4 percent slopes makes up the majority of the Subject Property and Sebewaing loam, disintegration moraine, 0 to 2 percents slopes occupies the northwest and southwest portions of the Subject Property.

Bedrock underlying the Subject Property consists of the Coldwater Shale Unit in the Kinderhookian Series of the Mississippian System and Paleozoic Era. The maximum thickness of Coldwater Shale

is generally 305 meters. In the eastern half of the basin, beds of silty and sandy shale, siltstone and fine-grained sandstone are common, and increase in abundance and coarseness to the west and upper section. The depth to bedrock in the vicinity of the Subject Property is estimated to be approximately 200 feet below grade.

Based on the two site-specific reports cited above, groundwater has been encountered at a depth of approximately 4-feet bg, with an observed groundwater flow in a northeasterly direction. However, localized flow direction may vary as a result of rainfall, development, geologic characteristics, nearby surface water bodies, underground utilities such as storm drains, septic systems and sewers, or other influences such as the presence of high-volume wells.

2.4 Groundwater Use

Municipal drinking water is provided to the Subject Property by the City of Ann Arbor.

3. SUBSURFACE INVESTIGATION

The following sections present the procedures followed in conducting the subsurface investigation of the Subject Property. A site plan with sample locations is provided as **Figure 2**.

3.1 Miss Dig

Atlas notified MISS DIG, Michigan's one-stop underground utility clearance network of the pending subsurface investigation and was provided with a confirmation number (Ticket Number 2022040502942).

3.2 Scope of Assessment

The scope of work for the subsurface soil and groundwater investigation was designed to assess existing subsurface conditions on the Subject Property and to evaluate the soil and groundwater (if encountered) for potential impact associated with the *RECs* described in §1.1 through §1.4 above, and if found to be present, determine if contaminant concentrations exceed applicable Part 201 criteria. The following provides further detail with respect to the overall investigation and sampling strategies.

3.2.1 Supplemental Record Review

A supplemental record review was not conducted as part of Atlas' scope of assessment.

3.2.2 Areas of Concern

Atlas developed a scope of work designed to evaluate and/or identify the areas of concern (AOCs) where contamination was most likely to be present. The subsurface investigation addressed the following AOCs:

- Soil boring, GP/TMW-1 was advanced adjacent to the west side of the 2050 building to evaluate the former oil and battery storage (REC-3).
- Soil borings GP/TMW-2 and GP/TMW3 were advanced on the north side of the 2050 building to evaluate the petroleum odor (REC-1) noted in this area. Atlas also collected a sediment and water sample from the storm water catch basin in this area.
- Soil borings GP/TMW-4 and GP/TMW5 were advanced within the 2050 building to evaluate the former in-ground hoists (REC-2).
- Soil boring HA-1 was advanced within the 2050 building to evaluate the former paint booth area (REC-2).
- Sub-slab soil-gas sample points (vaporpins®) SG-1, SG-2, SG-3, SG-4 and soil-gas implants SG-5 and SG-6¹ were installed and samples collected to evaluate both REC-1 and REC-2.

¹ SG-5 was installed in GP/TMW-2, and SG-6 in GP/TMW-3

3.2.3 Deviations from the Work Plan

This Phase II ESA did not deviate from the proposed work plan outlined in Atlas proposal 22-03738 except for the following:

- Atlas collected an additional sediment and water sample from the storm water catch basin in the area where the "odor" has been noted on the north side of the 2050 building.
- Atlas added laboratory analysis for the EGLE list of ten (10) hazardous metals (MI-10 Metals) to the soil and groundwater samples at the GP/TMW-1 and Storm Sewer samples.
- Atlas added laboratory analysis for hexavalent chromium to the sediment sample from the Storm Sewer sample.

Given the available information developed as part of the subsurface investigation, these deviations from the proposed work plan are not expected to have a substantial impact on the findings or conclusions of this report.

3.3 Geophysical Survey

Atlas retained the services of Facility Management Consultants International (FMCI) to perform a geophysical survey to evaluate the Subject Property for buried structures and/or buried utilities. Traditional electromagnetic equipment and Ground Penetrating Radar (GPR) technology were used during the survey. Electromagnetic equipment was the primary tool used to determine the location of all conductive subsurface structures, as well as any utilities that have locating wires (i.e. gas lines) buried with the non-conductive utility to facilitate location.

The geophysical survey was performed on April 12, 2022, prior to any/all invasive methods (ie. soil borings). The work area was scanned using a modified grid pattern to facilitate data collection, processing, and mapping of any identified anomalies. FMCI located subsurface structures, including storm and sanitary structures and buried electrical lines. However, the survey did not detect any UST type anomalies. A copy of the FMCI geophysical survey report may be found in **Appendix B.**

3.4 Soil Borings

Atlas and its drilling contractor Fibertec Environmental Services (Fibertec) mobilized to the Subject Property on April 19-20, 2022. Using direct push technology (Geoprobe®), and/or hand auger, Atlas supervised the advancement of six (6) soil borings (GP/TMW-1, GP/TMW-2, GP/TMW-3, GP/TMW-4, GP/TMW-5 and HA-1) to a maximum depth of investigation at 20 feet below grade (bg).

The soil borings were strategically positioned so that the analytical results from the samples collected at each boring location could be used to address potential impacts to the Subject Property. Soil boring logs may be found attached as **Appendix C**.

3.5 Sampling Protocol

This investigation was designed to sample the areas of highest potential contamination. Therefore, the sample or samples from each boring most likely to yield the highest contamination based on the referenced criteria were selected for laboratory analysis. The selection criteria was based on Subject Property knowledge, visual staining, olfactory evidence (odor), and field screening data that included the soil sample that exhibited the highest PID response. If no PID response was identified, a soil sample was selected from the zone that most likely corresponds to the REC being investigated.

3.5.1 Soils

Soil samples were collected continuously for soil characterization and field screening for total photo-ionizable volatile organic compounds (TVOCs) utilizing a photo-ionization detection (PID) device.

Soil samples were selected from each boring for laboratory chemical analysis based on the sampling rationale described in §3.2.2 above. Strict decontamination procedures were followed during the investigation to reduce the potential for cross-contamination. All down-hole sampling equipment was decontaminated prior to first use on-site, and thereafter between uses, using a vigorous wash in an Alconox solution, followed by a tap water rinse and air drying. Sample containers were inspected for cracks, chips, cleanliness, and the threads wiped clean before being sealed. The containers were labeled with the appropriate sample location, date, time, project number, and sampler's name. Samples were placed on "wet" ice and maintained at a temperature of approximately 4° Celsius prior to analysis. All soil samples collected for chemical analysis were submitted under chain-of-custody to Quantum Laboratories (Quantum) in Wixom, Michigan. Samples submitted for analysis of VOCs were field preserved using methanol in accordance with USEPA Method 5035.

3.5.2 Groundwater

Groundwater was encountered at the Subject Property at a depth of 5 feet bg at all but the HA-1 locations, and temporary wells with screens set at the 3'-8' bg depth interval were installed to enable the collection of groundwater samples. The samples were placed on "wet" ice and maintained at a temperature of approximately 4° Celsius prior to analysis. All water samples collected for VOCs were field preserved in 40-ml VOAs using hydrochloric acid (HCl). The water samples were submitted under chain-of-custody to Quantum for analysis.

3.5.3 Soil-Gas

Soil-gas monitoring points were installed to allow for the collection of soil-gas samples for laboratory analyses.

Four (4) sub-slab VaporPin® soil-gas monitoring points were installed within the 2050 building, and Soil borings GP/TMW-X and GP/TMW-Y were plugged back with hydrated bentonite to a depth of 4-feet below grade, and each was then completed with a soil gas implant at a depth 3.5 feet below grade. A 6-inch bed of coarse filter sand was placed above and below the implant, with hydrated bentonite to surface.

Atlas collected soil gas samples from the six (6) soil gas sample points on April 26, 2022. The samples were collected using a laboratory supplied, 1-liter Summa Canister™ for each sample. The soil gas sample points and sample train were checked for leaks using a helium chamber and vacuum shut-in tests, respectively. The internal volume of the soil gas sample points sample train was purged of approximately three (3) volumes of air at a rate of less than 200 milliliters per minute prior to collecting the samples. Each soil gas point was field screened for total volatile organic compounds (TVOCs) using a PID; and for methane; oxygen and carbon dioxide using a GEM 3-gas meter.

The soil-gas samples were submitted under chain-of-custody to Pace for analysis.

3.6 Quality Assurance/Quality Control

To ensure the accuracy of data collected during on site activities, Atlas implemented QA/QC measures. The QA/QC procedures included, but were not limited to decontamination of sampling equipment before and between sampling events; standing downwind of sample apparatus during PFAS sampling and following all EGLE PFAS sampling guidance; calibration of field equipment; documentation of field activities; and appropriate sample preservation techniques. Atlas performed a qualitative evaluation of all samples collected during drilling, and a quantitative analysis of discrete samples using approved laboratory analytical methods.

3.6.1 Decontamination of Equipment

During sample collection, Atlas adhered to proper decontamination procedures. Sampling equipment was decontaminated using the following methods to minimize potential cross-contamination of soil samples: Steam cleaning or washing and scrubbing the equipment with non-phosphate detergent; rinsing the equipment with tap water; and air-drying the equipment.

3.6.2 Calibration of Field Equipment

During Atlas's Limited Phase II ESA, a PID was used to screen all soil samples. The PID was maintained in a calibrated condition using 100-ppm isobutylene gas prior to conducting the Limited Phase II ESA.

3.6.3 Documentation of Activities

During Atlas's Limited Phase II ESA activities, Subject Property conditions (i.e. soil boring locations, weather conditions) were documented. Atlas visually inspected the soil samples and

prepared a geologic log for each soil boring. The logs included soil characteristics such as color, composition (e.g., sand, clay, or gravel), soil moisture, water table depth, and signs of possible contamination. All soil samples were delivered to the laboratory under chain-of-custody documentation.

3.6.4 Sample Preservation Techniques

Atlas collected soil and groundwater samples in accordance with United States Environmental Protection Agency's (USEPA) Publication SW-846, "Testing Methods for Evaluating Solid Waste". Soil samples were collected in laboratory-supplied containers, stored on wet ice, and submitted under chain-of-custody documentation to the laboratory. Samples submitted for analysis of VOCs were field preserved using methanol in accordance with USEPA Method 5035.

3.6.5 QA/QC Sampling

During Atlas's Limited Phase II ESA trip blank and duplicate samples were collected and included with the samples submitted to the laboratory. Atlas collected duplicate soil and groundwater samples during the investigation and the laboratory provided the trip blanks. The duplicate samples were submitted for same analyses as the originals, and the trip blank was submitted for the analysis of VOCs only.

3.7 Laboratory Analyses and Methods

The soil and groundwater samples collected from the Subject Property were analyzed for one or more of the following:

- Volatile Organic Compounds (VOCs)
 - o Soil/Groundwater: by USEPA analytical method 8260,
 - Soil Gas: by USEPA analytical method TO-15,
- Semi-Volatile Organic Compounds (SVOCs) by USEPA analytical method 8270,
- Gasoline Range Organics (GRO) by USEPA 8015/8260 (mod),
- Diesel Range and Oil Range Organics (DRO/ORO) by USEPA 8015/8270 (mod),
- Michigan "10" Metals (MI-10) by USEPA analytical method 7010/7470 series,
- Hexavalent chromium by USEPA analytical method 7196/3060

The following table provides a breakdown of the sampling media and laboratory analysis performed at each soil boring location:

Sample ID	Sample Depth	Sample Media	PID Result	Lab	VOCs	SVOCs	MI-10	Hex Cr	GRO	DRO
GP/TMW-1	3'-4'	Soil		Quantum ¹	>	\	<		\	>
GP/TMW-1	3'-8'	Water	NA	Quantum	>	~	<		\	~
GP/TMW-2	3.5'-4.5'	Soil		Quantum	>	\			>	>
GP/TMW-2	3'-8'	Water	NA	Quantum	>	>			>	>
GP/TMW-3	4'-5'	Soil		Quantum	>	<			>	>
GP/TMW-3	3'-8'	Water	NA	Quantum	>	>			>	>
GP/TMW-4	3'-4'	Soil		Quantum	>	<			\	>
GP/TMW-4	3'-8'	Water	NA	Quantum	>	>			>	>
GP/TMW-5	4'-5'	Soil		Quantum	>	<			<	>
GP/TMW-5	3'-8'	Water	NA	Quantum	>	<			<	~
HA-1	2'-3'	Soil		Quantum	>	<			<	>
St Sewer		Sediment	NA	Quantum	>	<	<	>	\	~
St Sewer		Water	NA	Quantum	>	>	>		>	>
VP-1	1'	Soil Gas		Pace ²	>					
VP-2	1'	Soil Gas		Pace	>					
VP-3	1'	Soil Gas		Pace	>					
VP-4	1'	Soil Gas		Pace	>					
GP/TMW-X	3.5'	Soil Gas		Pace	>					
GP/TMW=Y	3.5'	Soil Gas	_	Pace	~				_	

^{1 -} Quantum Laboratories, Wixom, MI

4. RESULTS OF SUBSURFACE INVESTIGATION

Based on the intended future developments and current commercial use of the surrounding properties, the Residential Part 201 Generic Cleanup Criteria and Screening Levels/Part 213 Risk-Based Screening Levels (December 30, 2013, GSI Protection Criteria Updated June 25, 2018; updated December 21, 2020) were used. The following provides a summary of the analytical results

4.1 Site Hydrogeology

The site geology was observed as part of the subsurface investigation. A mixed lithology varying from fine to medium grained and coarse sand to sandy clay was encountered in all soil borings from surface to a depth of 9-10 feet below grade. Dense, gray/brown silty clay was encountered underlying the surface lithology to the maximum depth of investigation at 20-feet below grade. Saturated conditions were encountered at a depth of 5-6 feet bg during the course of Atlas' subsurface investigation. Soil boring logs may be found in **Appendix C**.

² - Pace Analytical, Minneapolis, MN

4.2 Analytical Results

Atlas collected a total of seven (7) soil/sediment samples, six (6) storm/groundwater samples and six (6) soil gas samples as part of the subsurface investigation. The soil and groundwater samples were submitted under chain of custody to Quantum Laboratories (Quantum) on April 21, 2022 to be analyzed for parameters appropriate to the RECs being investigated (see §3.6 above). The soil-gas samples were submitted to Pace Analytical (Pace) under chain of custody on April 29, 2022.

The laboratories reported the results back to Atlas as follows:

- Quantum Report No. 12245 on May 2, 2022; and
- Pace Report No, 10606801 on May 27, 2022.

The analytical data has been tabulated as Table 1 – Analytical Results Summary: Soil, as Table 2 – Analytical Results Summary: Groundwater, and as Table 3 – Analytical Results Summary: Soil-Gas. The analytical reports may be found attached as **Appendix D**.

4.2.1 Soil Analytical Results

Atlas submitted seven (7) soil samples to be analyzed for VOCs, SVOCs, DRO and ORO; five (5) to be analyzed for GRO, and two (2) to be analyzed for MI-10 Metals.

- VOCs: With the exception of soil samples GP/TMW-3 and GP/TMW-4, the laboratory analyses resulted in "Non-Detect²" for all of the five remaining soil samples submitted for VOCs analysis. Benzene, n-butylbenzene, sec-butylbenzene, ethylbenzene, isopropyl benzene, 2-methylnaphthalene, naphthalene and/or n-propylbenzene were detected in one or both of the samples. The underlined analytes were found to exceed either the Part 201 Generic Residential Clean-up Criteria (GRCC), or the Non-residential Volatilization to indoor Air pathway criteria (VIAP_{NR})
- **SVOCs:** With the exception of soil samples GP/TMW-3, GP/TMW-4 and the catch basin sediment sample, the laboratory analyses resulted in "Non-Detect" for all of the four remaining soil samples submitted for SVOCs analysis. Benzo(k)fluoranthene, fluoranthene, 2-methylnaphthalene, naphthalene, phenanthrene and pyrene were detected in one or all of the samples. However, only naphthalene was detected in excess of the Part 201 GRCC.
- GRO: GRO was detected in the GP/TMW-2 and GP/TMW-3 samples at concentrations greater than 350 mg/kg but less than 900 mg/kg, which, according to the EGLE Guidance document "Non-aqueous Phase Liquid (NAPL) Characterization, Remediation, and Management for Petroleum Release", dated June 2014, indicates that the VIAP_{NR} is applicable at the Site.

² "Non-Detect" indicates that the analyte was not detectable at concentrations exceeding laboratory method detection limits (MDLs).

- **DRO/ORO:** DRO/ORO were also detected in the GP/TMW-2 and GP/TMW-3 samples at concentrations greater than 20 mg/kg but less than 500 mg/kg, which, according to the EGLE Guidance document also indicates that the VIAP_{NR} is applicable at the Site.
- **MI-10:** Arsenic, barium, chromium, copper, lead and zinc were detected at various concentrations in the samples analyzed:
 - Arsenic, copper and lead were detected in both samples at concentrations below the Statewide Default Background criteria (SDBC), and may be considered to be "naturally occurring" at the Site.
 - Barium and zinc were detected in both samples, below the SDBC in the GP/TMW-1 sample, and above the SDBC, but below the GRCC in the catch basin sediment sample. The presence of barium and zinc at the Site is most likely "naturally occurring" also.
 - Chromium: The laboratory analyses resulted in chromium concentrations greater than the Part 201 GRCC for the sediment sample (the GP/TMW-1 sample resulted in "Non-Detect" for chromium). Chromium exists in two forms or "species"; and EGLE regulations stipulate that, when the chromium species is unknown, the analytical results must be compared to the more restrictive clean-up criteria for hexavalent chromium. Based on this requirement, Atlas requested that the laboratory also analyze the catch basin sediment sample for Cr_{VI}. The laboratory analysis for hexavalent chromium resulted in "Non Detect" for the sediment sample, and the presence of chromium at the Site may be considered to be "naturally occurring".

The following table presents the maximum detected soil contaminant results, and provides a comparison the Part 201 Generic Residential Clean-up Criteria (GRCC):

	Analyte	CAS No.	MDC	Sample Location	Part 201 GRCC	SSVIAC _{NR}
	Benzene	71-43-2	100	GP/TMW-3	100	47
	n-Butylbenzene	104-51-8	2,240	GP/TMW-3	1,600	9,800
	s-Butylbenzene	135-98-8	1,570	GP/TMW-4	1,600	66,000
VOCs	Ethylbenzene	100-41-4	246	GP/TMW-3	360	340
9	Isopropyl Benzene	98-82-8	862	GP/TMW-3	3,200	110
	2-Methylnaphthalene	91-57-6	5,190	GP/TMW-3	4,200	30,000
	Naphthalene	91-20-3	3,930	GP/TMW-3	730	1,900
	n-Propylbenzene	103-65-1	3,980	GP/TMW-3	1,600	21,000
	Benzo(k)fluoranthene	207-08-9	346	Catch Basin	200,000	NA
	Fluoranthene	206-44-0	349	Catch Basin	5,500	NA
SCS	2-Methylnaphthalene	91-57-6	3,530	GP/TMW-3	4,200	30,000
SVOCs	Naphthalene	91-20-3	2,880	GP/TMW-3	730	1,900
	Phenanthrene	85-01-8	779	GP/TMW-4	2,100	29,000
	Pyrene	129-00-0	378	Catch Basin	480,000	4.40E+08
	Arsenic	7440-38-2	1,750	Catch Basin	4,600	NA
ွ	Barium	7440-39-3	149,000	Catch Basin	1,300,000	NA
Metals	Chromium _{III}	7440-39-3	5,700	Catch Basin	30,000	NA
Ň	Chromium _{VI}	7440-39-3	<2000	Catch Basin	3,300	NA
MI-10	Copper	7440-50-8	8,240	Catch Basin	5,800,000	NA
2	Lead	7439-92-1	2,990	Catch Basin	400,000	NA
	Zinc	7440-66-6	64,000	Catch Basin	2,400,000	NA

	5190
	3930
Ì	2670
	1335
	<1000

Red shading indicates analyte exceeds Part 201 GRCC

Yellow shading w/ red outline indicates analyte exceeds both Part 201 GRCC and SSVIAC_N

Yellow shading indicates analyte exceeds SSVIAC_{NR}

Clear shading indicates analyte meets all criteriae

Green shading indicates analyte "Not Detected" at concentrations exceeding laboratory me levels (MDLs)

4.2.2 Groundwater Analytical Results

Atlas submitted six (6) water samples to be analyzed for VOCs, SVOCs, DRO and ORO; five (5) to be analyzed for GRO, and two (2) to be analyzed for MI-10 Metals.

- VOCs: With the exception of water samples GP/TMW-1, GP/TMW-3 and GP/TMW-4, the laboratory analyses resulted in "Non-Detect" for all of the four remaining water samples submitted for VOCs analysis. <u>Benzene</u>, n-butylbenzene, sec-butylbenzene, ethylbenzene, <u>isopropyl benzene</u>, <u>2-methylnaphthalene</u>, <u>naphthalene</u>, n-propylbenzene, toluene and/or 1,2,4-trimethylbenzene (TMB) were detected in one or all of the samples. The underlined analytes were found to exceed either the Part 201 GRCC or the VIAP_{NR}.
- **SVOCs:** With the exception of water sample GP/TMW-3, the laboratory analyses resulted in "Non-Detect" for all of the five remaining water samples submitted for SVOCs analysis. 2-

Methylnaphthalene and naphthalene were detected in the GP/TMW-3 sample. However, neither was detected in excess of the Part 201 GRCC.

- **MI-10:** barium, was detected at varying concentrations in the two samples analyzed, however, neither was found to exceed the Part 201 GRCC.
- GRO/ DRO/ORO were detected at various low concentrations in all but the GP/TMW-4 sample.

The following table presents the maximum detected groundwater contaminant results, and provides a comparison the Part 201 Generic Residential Clean-up Criteria (GRCC):

	Analyte	CAS No.	MDC ug/L	Sample Location	Part 201 GRCC	SSVIAC _{NR}
	Benzene	71-43-2	6.0	GP/TMW-1	5.0	8.4
	n-Butylbenzene	104-51-8	14	GP/TMW-3	80	360
	s-Butylbenzene	135-98-8	7.0	GP/TMW-3	80	400
	Ethylbenzene	100-41-4	6.0	GP/TMW-3	18	28
VOCs	Isopropyl Benzene	98-82-8	19	GP/TMW-3	28	6.7
9	2-Methylnaphthalene	91-57-6	21	GP/TMW-3	19	110
	Naphthalene	91-20-3	32	GP/TMW-3	11	12
	n-Propylbenzene	103-65-1	52	GP/TMW-3	80	970
	Toluene	108-88-3	1.0	GP/TMW-3	270	6,600
	1,2,4-TMB	95-63-6	2.0	GP/TMW-3	17	120
SVOCs	2-Methylnaphthalene	91-57-6	9.0	GP/TMW-3	19	110
SVC	Naphthalene	91-20-3	9.0	GP/TMW-3	11	12
	Barium	7440-39-3	452	Catch Basin	2,000	NA

5190	
3930	
2670	
1335	

Red shading indicates analyte exceeds Part 201 GRCC

Yellow shading w/ red outline indicates analyte exceeds both Part 201 GRCC and SSVIAC_N

Yellow shading indicates analyte exceeds SSVIAC_{NR}

Clear shading indicates analyte meets all criteriae

4.2.3 Soil-Gas Analytical Results

Atlas submitted six (6) soil-gas samples to be analyzed for VOCs. The laboratory analyses identified some or all of the following analytes in all soil-gas samples: acetone, benzene, 2-butanone, carbon disulfide, chloroform, cyclohexane, dichlorofluoromethane, ethanol, ethylbenzene, 4-ethyltoluene, heptane, hexane, isopropanol, propylene, styrene, tetrachloroethene, toluene, 1,2,3-, 1,2,4- and 1.3.5-trimethylbenzene (TMBs) and xylenes.

Atlas compared the analytes identified in the soil-gas samples to the following volatilization to indoor air criteria:

 Non-Residential, Site Specific, volatilization to indoor air criteria (SSVIAC_{NR}) developed by EGLE specifically for use at the Subject Property;

- Non-Residential, Media specific, volatilization to indoor air screening levels (MSSL_{NR}) developed by EGLE for interim response actions; and
- Non-Residential, Volatilization to indoor air pathway criteria (VIAP_{NR})

It should be noted that while the individual criteria in each of the listed criteria sets may vary, for this site, they did not. The $VIAP_{NR}$ was used, as it was the most complete. None of the detected analytes were found to exceed the $VIAP_{NR}$.

The following table presents the maximum detected soil-gas contaminant results, and provides a comparison to the $VIAP_{NR}$:

	Analyte	CAS No.	MDC ug/m³	Sample Location	VIAP _{NR}
	Acetone	67-64-1	361	SG-4	1,000,000
	Benzene	71-43-2	1.9	SG-4	260
	2-Butanone (MEK)	78-93-3	60	SG-4	170,000
	Carbon Disulfide	75-15-0	2.2	SG-2	36,000
	Chloroform	67-66-3	7.6	SG-1	87
	Cyclohexane	110-82-7	7,520	SG-6	310,000
	Dichlorodifluoromethan	75-71-8	5,400	SG-2	17,000
	Ethanol	64-17-5	301	SG-1	630,000
	Ethylbenzene	100-41-4	7.7	SG-1	800
တ	4-Ethyltoluene	622-96-8	8.0	SG-1	NA
VOCs	n-Heptane	142-82-5	1,690	SG-6	180,000
>	n-Hexane	110-54-3	3,250	SG-6	36,000
	2-Propanol	67-63-0	8.4	SG-3	10,000
	Propylene	115-07-1	6.9	SG-4	NA
	Styrene	100-42-5	2.3	SG-1	3,500
	Tetrachloroehtene	127-18-4	138.0	SG-6	1,400
	Toluene	108-88-3	42.4	SG-4	250,000
	1,2,3-TMB	526-73-8	7.9	SG-1	3,100
	1,2,4-TMB	95-63-6	23.2	SG-1	3,100
	1,3,5-TMB	108-67-8	10.2	SG-1	3,100
	Xylenes	1330-20-7	41.4	SG-1	11,000

5190 1335 Red shading indicates analyte exceeds VIAP_{NR} Clear shading indicates analyte meets all criteriae

5. CONCLUSIONS AND RECOMMENDATIONS

This Limited Phase II ESA was conducted to evaluate a subset of the *RECs* identified during the March 2022 Phase I ESA. The following provides a summary of our conclusions and recommendations:

- Atlas advanced six (6) soil borings to collect soil and groundwater samples, and installed six (6) soil gas implants to collect soil-gas samples at the Site.
- The six soil borings were advanced to depths varying between 5-feet below grade, to a
 maximum depth of investigation at 15 feet below grade. Soil samples were collected
 continuously for soil characterization and field screened TVOCs utilizing a PID device.
 One soil sample was collected from each soil boring for laboratory analysis.
- Groundwater was encountered at an average depth of 5-feet below grade. Groundwater samples were collected from each soil boring for laboratory analysis. (a water sample was not collected from the HA-1 boring.
- Soil-gas samples were collected from the six soil-gas sampling points for laboratory analysis.
- One sediment and one water sample were collected from the storm-water catch basin located on the north side of the building.
- The analytical results indicated that VOCs, SVOCs and MI-10 Metals were detected in soil and/or groundwater samples as follows:

o GP/TMW-1:

- Soil: VOCs/SVOCs were not detected above laboratory method detection limits (MDLs). Arsenic, barium, copper, lead and zinc present at naturally occurring levels.
- GW: VOCs do not exceed Part 201 GRCC; SVOCs not detected above MDLs; barium does not exceed GRCC

GP/TMW-3:

- Soil: Benzene, n-butylbenzene, isopropylbenzene, 2-methylnaphthalene, naphthalene and n-propylbenzene exceed Part 201 GRCC and/or SSVIAC_{NR}
- GW: Benzene, isopropylbenzene and naphthalene exceed Part 201 GRCC and/or SSVIAC_{NR}

o **GP/TMW-4**:

- Soil: 2-methylnaphthalene exceeds Part 201 GRCC and/or SSVIAC_{NR}
- GW: VOCs/SVOCs were not detected above laboratory detection limits.

Catch Basin:

- Soil: VOCs were not detected above laboratory detection limits. SVOCs do not exceed Part 201 GRCC. Arsenic, chromium, copper and lead present at naturally occurring levels. Barium & zinc do not exceed Part 201 GRCC (probably naturally occurring).
- GW: VOCs/SVOCs were not detected above laboratory detection limits;
 Barium detected below GRCC.
- GP/TMW-2, GP/TMW5 & HA-1:
 - Soil: VOCs/SVOCs were not detected above laboratory detection limits.
 - GW: VOCs/SVOCs were not detected above laboratory detection limits.
- The analytical results also indicated that VOCs were detected in soil-gas samples, however, none was found to exceed criteria.

Based on the findings of this subsurface investigation, the Subject Property meets the definition of a "facility" as that term is defined by Part 201 of the Natural Resources and Environmental Protection Act (NREPA), PA 451 of 1994, as amended (Part 201). Accordingly, Atlas recommends that when the AAAHC decides to move forward with acquisition of the property, a Baseline Environmental Assessment (BEA) be performed in accordance with Part 201. The BEA will need to be completed within 45 days (before or after) the purchase, occupancy, or foreclosure by the new entity and submitted to the EGLE within six months of the purchase, occupancy, or foreclosure date. Atlas notes that the owner or operator of a "facility" will also assume due care obligations in accordance with Part 201. Accordingly, a due care plan is recommended.

6. REFERENCES

Listed below are documents utilized to aid in the completion of this Limited Phase II ESA.

- "Environmental Remediation," Part 201 of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended
- "Standard Practice for Environmental Site Assessments: Limited Phase II Environmental Site Assessment Process," ASTM Designation: E 1903-11
- "Standard Guide for Direct Push Soil Sampling for Environmental Site Characterizations", ASTM Designation D 6282-98
- "Standard Practice for Description and Identification of Soils (Visual/Manual Procedures),"
 ASTM Designation: D 2488-17-E1
- "Standard Practice for Low-Flow Purging and Sampling Used for Groundwater Monitoring," ASTM Designation: D 6771-21
- "Standard Practice for Active Soil Gas Sampling in the Vadose Zone for Vapor Intrusion Evaluations," ASTM Designation: D 7663-12R18E1
- "Testing Methods for Evaluating Solid Waste," USEPA Publication SW-846,
- "Quaternary Geology of Southern Michigan", (Farrand, W.R. and Bell, D.L., 1982),
- "Bedrock Geology of Michigan", (Segal, T.E., Wilson, S.E. and Milstein, R.L., 1987),
- "Stratigraphic Cross-Sections of the Michigan Basin", (Lilienthal, R.T., 1978),
- "Drift Thickness Map", (Akers, J, 1938),
- "United States Department of Agriculture (USDA) Web Soil Survey,
- "Ann Arbor East, Michigan" Topographic Map; USGS, 1983),
- "Phase I Environmental Site Assessment Report, Industrial Property, 2000 South Industrial Highway, Ann Arbor, Michigan 48104"; Atlas Report No. 188DD22012; Atlas Technical Consultants LLC, March 10, 2022.
- "Soil and Groundwater Investigation Report; City of Ann Arbor Utilities Dept./Field Services; Orphan Heating Oil UST"; Atlas Report No. 188EM21004.01; Atlas Technical Consultants LLC, January 7, 2022.
- "Closure Report; City of Ann Arbor Fuel Farm; 2000 S Industrial Highway, Ann Arbor, Washtenaw County, Michigan"; Atlas Report No. 188EM20011.03; Atlas Technical Consultants LLC, October 25, 2021.

7. SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

We declare that, to the best of our professional knowledge and belief, we meet the definition of Environmental Professional as defined in §312.10 of 40 CFR 312 and we have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the Subject Property. We have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Gerard DeBusschere, CPG

Senior Project Manager

Ann O'Brien

Due Diligence Manager

ni Othe

TABLES

TABLE 1 - ANALYTICAL RESULTS SUMMARY: Soil AAAHC - 2050 S Industrial Hwy., Ann Arbor, Washtenaw County, MI

	Lab ID:		Part 201	Non-Res	12245-8	12245-9	12245-10	12245-11	12245-12	12245-13	12245-14	12245-15
	Sample ID:	Statewide Default	Generic	Site Specific	GP/TMW-1	GP/TMW-2	GP/TMW-3	GP/TMW-4	GP/TMW-5	HA-1	Dup	ST Sewer
S	ample Depth:	Background	Residential	Volatilization	3'-4'	3.5'-4.5'	4'-5'	3'-4'	4'-5'	2'-3'		Sediment
Co	ollection Date:	Levels	Clean-up	to Indoor Air	4/19/22	4/19/22	4/19/22	4/19/22	4/19/22	4/19/22	4/19/22	4/19/22
	Notes:	Levels	Criteria	Criteria								
Volatiles, VOCs, ug/Kg	CAS No.											
Benzene (I)	71-43-2	NA	100	47M	< 50	< 50	100	< 50	< 50	< 50	< 50	< 50
n-Butylbenzene	104-51-8	NA	1,600	9,800	< 50	< 50	2,240	901	< 50	< 50	393	< 50
sec-Butylbenzene	135-98-8	NA	1,600	66,000	< 50	< 50	667	1,570	< 50	< 50	737	< 50
Ethylbenzene (I)	100-41-4	NA	360	340	< 50	< 50	246	< 50	< 50	< 50	< 50	< 50
Isopropyl benzene	98-82-8	NA	3,200	110M	< 250	< 250	862	< 250	< 250	< 250	< 250	< 250
2-Methylnaphthalene	91-57-6	NA	4,200	30,000	< 250	< 250	5,190	4,230	< 250	< 250	4,580	< 250
Naphthalene	91-20-3	NA	730	1,900	< 250	< 250	3,930	493	< 250	< 250	< 250	< 250
n-Propylbenzene (I)	103-65-1	NA	1,600	21,000	< 100	< 100	3,980	403	< 100	< 100	178	< 100
TPH, ug/Kg												
TPH-GRO						< 10000	624,000	765,000	< 10000		634,000	< 10000
Metals, ug/Kg												
Arsenic (B)	7440-38-2	5,800	4,600	NA	614							1,750
Barium (B)	7440-39-3	75,000	1,300,000	NA	41,600							149,000
Chromium, Total	7440-47-3	18,000	30,000	NA	< 2000							5,700
Chromium _{VI}	18540-29-9	NA	3,300	NA								<2000
Copper (B)	7440-50-8	32,000	5,800,000	NA	3,060							8,240
Lead (B)	7439-92-1	21,000	400,000	NA	2,050							2,990
Zinc (B)	7440-66-6	47,000	2,400,000	NA	10,600							64,000
Semivolatiles, ug/Kg												
Benzo(k)fluoranthene (Q)	207-08-9	NA	200,000	NA	< 330	< 330	< 330	< 330	< 330	< 330	< 330	346
Fluoranthene	206-44-0	NA	5,500	NA	< 330	< 330	< 330	< 330	< 330	< 330	< 330	349
2-Methylnaphthalene	91-57-6	NA	4,200	30,000	< 330	< 330	3,530	2,070	< 330	< 330	793	< 330
Naphthalene	91-20-3	NA	730	1,900	< 330	< 330	2,880	< 330	< 330	< 330	< 330	< 330
Phenanthrene	85-01-8	NA	2,100	29,000	< 330	< 330	< 330	779	< 330	< 330	< 330	< 330
Pyrene	129-00-0	NA	480,000	4.40E+08	< 330	< 330	< 330	< 330	< 330	< 330	< 330	378
TPH, ug/Kg												
TPH-DRO					< 20000	< 20000	196,000	431,000	< 20000		1,410,000	36,500
TPH-ORO					< 20000	< 20000	111,000	427,000	< 20000		1,110,000	236,000

١	500	Red Shading indicates analyte exceeds Part 201 GRCC
	250	Yellow Shading indicates analyte exceeds SSVIAC _{NR} only
	125	Blue Shading indicates analyte likely to be naturally occurring
	65	Clear Shading indicates analyte does not exceed GRCC
	<50	Green Shading indicates analyte "Not Detected" at concentrations exceeding laboratory method detection limits (MDLs)

TABLE 2 - ANALYTICAL RESULTS SUMMARY: Groundwater AAAHC - 2050 S Industrial Hwy., Ann Arbor, Washtenaw County, MI

		Non-Res	D4 004	12245-1	12245-2	12245-3	12245-7	12245-4	12245-5	12245-6	12245-16
		Volatilization to	Part 201 Generic	GP/TMW-1	GP/TMW-2	GP/TMW-3	Dup	GP/TMW-4	GP/TMW-5	ST Sewer	Trip Blank
		Indoor Air	Clean-up	4/19/22	4/19/22	4/19/22	4/19/22	4/19/22	4/19/22	4/19/22	4/19/22
		Pathway	Criteria				GP/TMW-3				
		Shallow GW	Onteria								
Volatiles, VOCs, ug/L	CAS No.	VIAP _{NR}	GRCC								
Benzene (I)	71-43-2	8.4 ca	5.0	3	< 1	6	< 1	< 1	< 1	< 1	< 1
n-Butylbenzene	104-51-8	360 nc	80	< 1	< 1	13	14	< 1	< 1	< 1	< 1
sec-Butylbenzene	135-98-8	400 nc	80	< 1	< 1	7	6	< 1	< 1	< 1	<1
Ethylbenzene (I)	100-41-4	28 ca	18	< 1	< 1	6	5	< 1	< 1	< 1	<1
Isopropyl benzene	98-82-8	6.7 ca	28	< 5	< 5	19	15	< 5	< 5	< 5	< 5
2-Methylnaphthalene	91-57-6	110 nc	19	< 5	< 5	18	21	< 5	< 5	< 5	< 5
Naphthalene	91-20-3	12 ca	11	< 5	< 5	25	32	< 5	< 5	< 5	< 5
n-Propylbenzene (I)	103-65-1	970 (DD) dev	80	< 1	< 1	52	46	< 1	< 1	< 1	< 1
Toluene (I)	108-88-3	6,600 (FF) st	270	1	< 1	1	< 1	< 1	< 1	< 1	< 1
1,2,4-Trimethylbenzene (I)	95-63-6	120 (JT) nc	17	< 1	< 1	2	2	< 1	< 1	< 1	< 1
TPH, ug/L											
TPH-GRO					< 100	2,810	3,050	< 100	< 100	146	
Metals, ug/L											
Barium (B)	7440-39-3	NA	2000	440						452	
Semivolatiles, ug/L											
2-Methylnaphthalene	91-57-6	110 nc	19	< 5	< 5	9	7	< 5	< 5	< 5	
Naphthalene	91-20-3	12 ca	11	< 5	< 5	9	7	< 5	< 5	< 5	
TPH, ug/L											
TPH-DRO				146	157	670	684	< 100	188	132	
TPH-ORO				< 200	< 200	< 200	< 200	< 200	284	< 200	

500	Red Shading indicates analyte exceeds Part 201 GRCC
250	Yellow Shading indicates analyte exceeds VIAP _(NR) only
125	Blue Shading indicates analyte likely to be naturally occurring
65	Clear Shading indicates analyte does not exceed GRCC
<50	Green Shading indicates analyte "Not Detected" at concentrat

Green Shading indicates analyte "Not Detected" at concentrations exceeding laboratory method detection limits (MDLs)

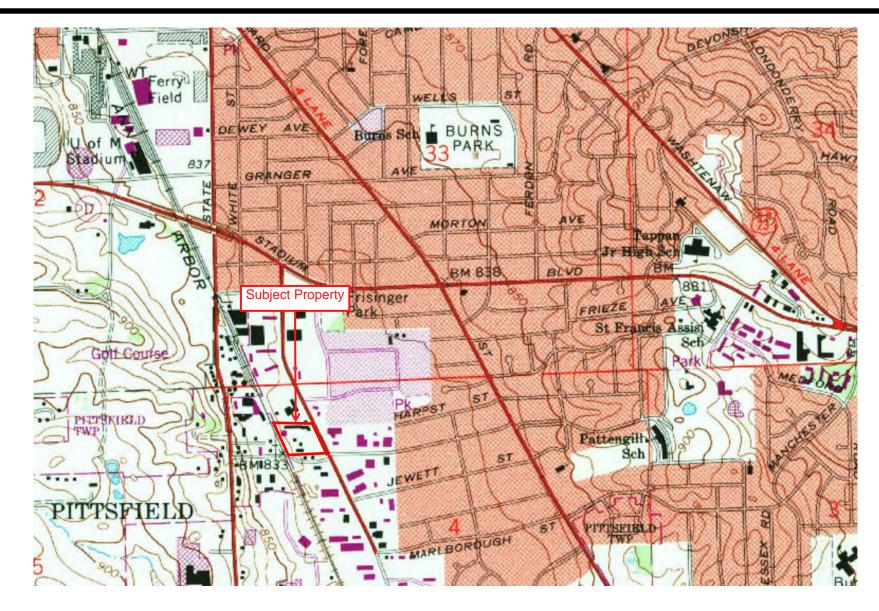
TABLE 3 - ANALYTICAL RESULTS SUMMARY: Soil Gas AAAHC - 2050 S Industrial Hwy., Ann Arbor, Washtenaw County, MI

			Non-Res Site	Media	Non-Res	10606801-1	10606801-2	10606801-3	10606801-4	10606801-5	10606801-6
			Specific	Specific	Volatilization	SG-1	SG-2	SG-3	SG-4	SG-5	SG-6
			VIAC	VIAC	to Indoor Air	4/29/2022	4/29/2022	4/29/2022	4/29/2022	4/29/2022	4/29/2022
Parameter	CAS No.	Method	SSVIAC _{NR}	MSSL _{NR}	VIAP _{NR}	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³
Acetone	67-64-1	TO-15	NA	1,000,000	1,000,000	323	32.2	83.5	361	17.9	<663
Benzene	71-43-2	TO-15	260	260	260	1.8	< 0.59	1.4	1.9	0.78	<35.7
2-Butanone (MEK)	78-93-3	TO-15	NA	170,000	170,000	20.3	<5.5	9.5	60	<5.4	<329
Carbon disulfide	75-15-0	TO-15	NA	NA	36000	<1.2	2.2	<1.1	1.8	1.9	<69.5
Chloroform	67-66-3	TO-15	NA	87	87	7.6	<0.91	<0.88	3.7	<0.89	<54.5
Cyclohexane	110-82-7	TO-15	310,000	NA	310,000	4.6	357	<3.1	6.1	<3.2	7520
Dichlorodifluoromethane	75-71-8	TO-15	NA	NA	17000	62	5400	3.1	2.5	2.1	<111
Ethanol	64-17-5	TO-15	630,000	630,000	630,000	301	15.3	150	88.9	3.5	<211
Ethylbenzene	100-41-4	TO-15	800	800	800	7.7	4.3	4.1	4.8	3.8	<97.0
4-Ethyltoluene	622-96-8	TO-15	NA	NA	NA	8	<4.6	<4.4	<4.6	<4.5	<274
n-Heptane	142-82-5	TO-15	180,000	NA	180,000	5.5	67.1	<3.7	5.6	4.4	1690
n-Hexane	110-54-3	TO-15	36,000	36,000	36,000	4.6	131	4.5	5.4	3	3250
2-Propanol	67-63-0	TO-15	10,000	NA	10,000	<4.7	<4.6	8.4	<4.6	<4.5	<274
Propylene	115-07-1	TO-15	NA	NA	NA	<1.6	<1.6	<1.5	6.9	1.6	<96.1
Styrene	100-42-5	TO-15	3,500	NA	3500	2.3	<1.6	<1.5	1.7	<1.6	<95.1
Tetrachloroethene	127-18-4	TO-15	NA	NA	1400	3.8	25	11.1	3.1	9.8	138
Toluene	108-88-3	TO-15	250,000	250,000	250,000	36.1	27.5	30.3	42.4	22	<210
1,2,3-Trimethylbenzene	526-73-8	TO-15	3,100	3,100	3,100	7.9	2.1	2.1	2.2	2	<110
1,2,4-Trimethylbenzene	95-63-6	TO-15	3,100	3,100	3,100	23.2	4.5	5.3	6.2	5	<110
1,3,5-Trimethylbenzene	108-67-8	TO-15	3,100	3,100	3,100	10.2	2.2	1.9	1.9	<1.8	<110
Xylenes, Total	1330-20-7	TO-15	11,000	11,000	11,000	41.4	22.6	23.9	27.8	20.9	<291

7525 225 NA

<1

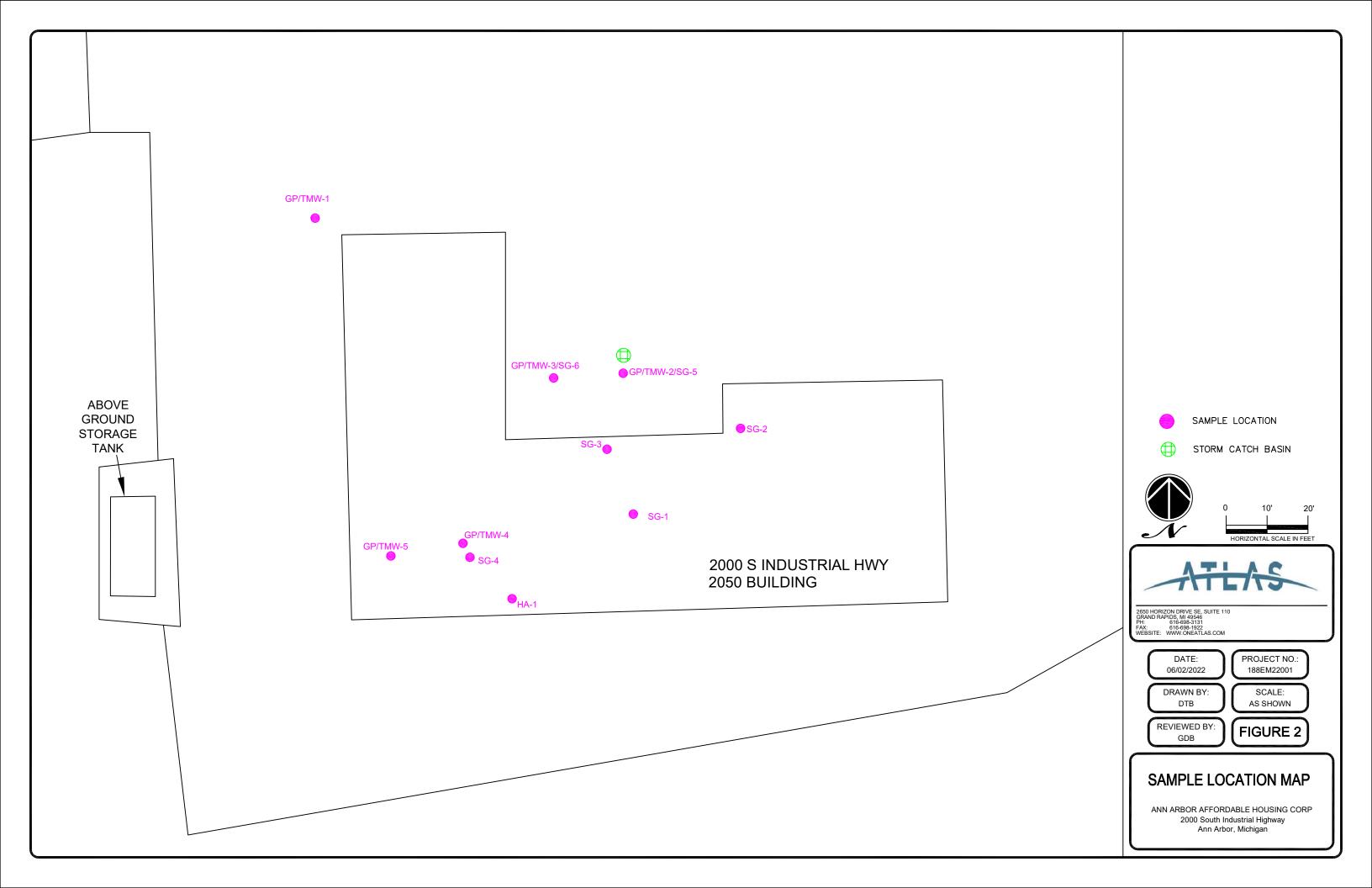
Red Shading indicates analyte exceeds SSVIAC_{NR}/MSSL_{NR}/VIAP_{NR}

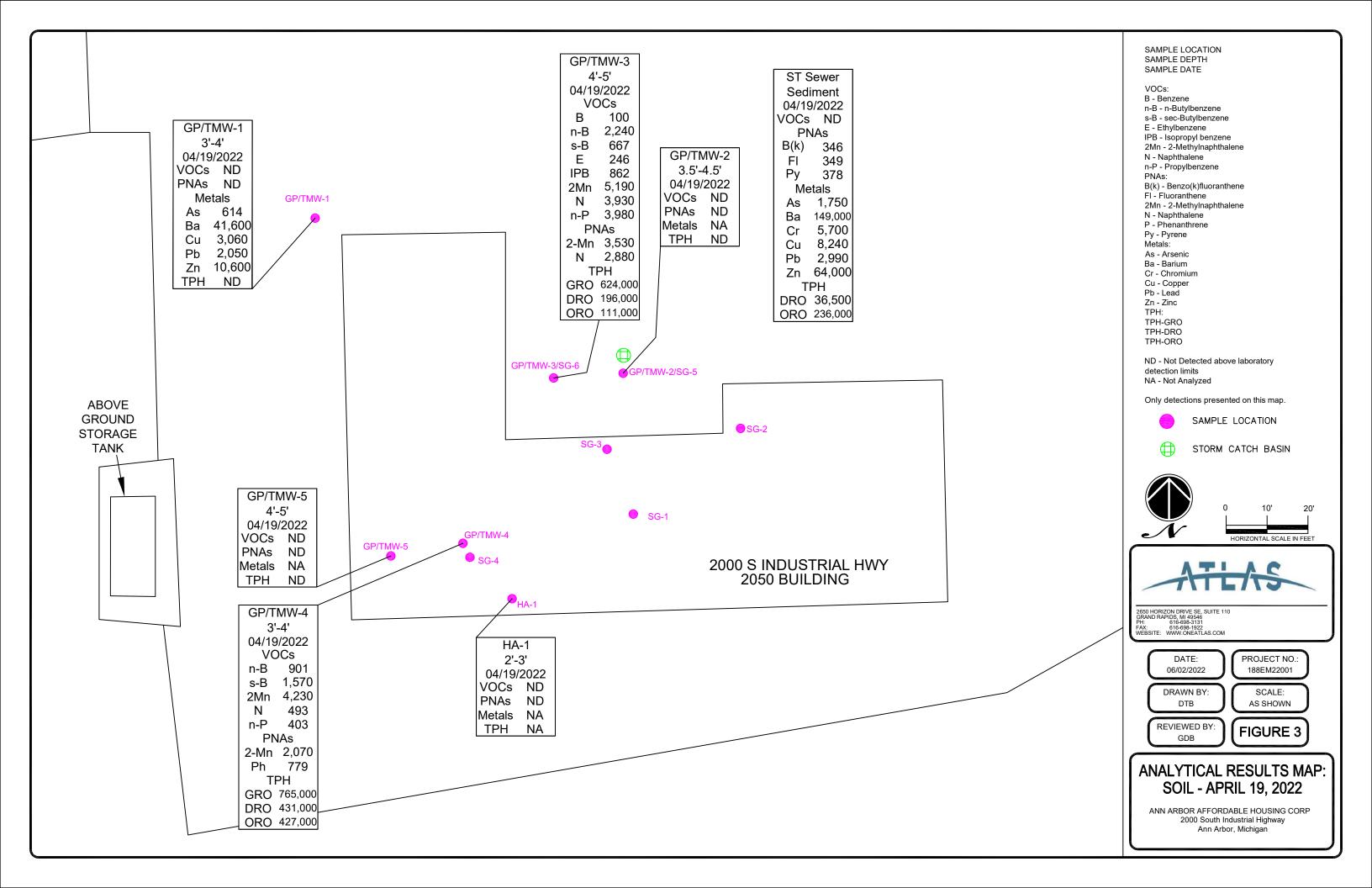

Clear Shading indicates analyte does not exceed $SSVIAC_{NR}/MSSL_{NR}/VIAP_{NR}$

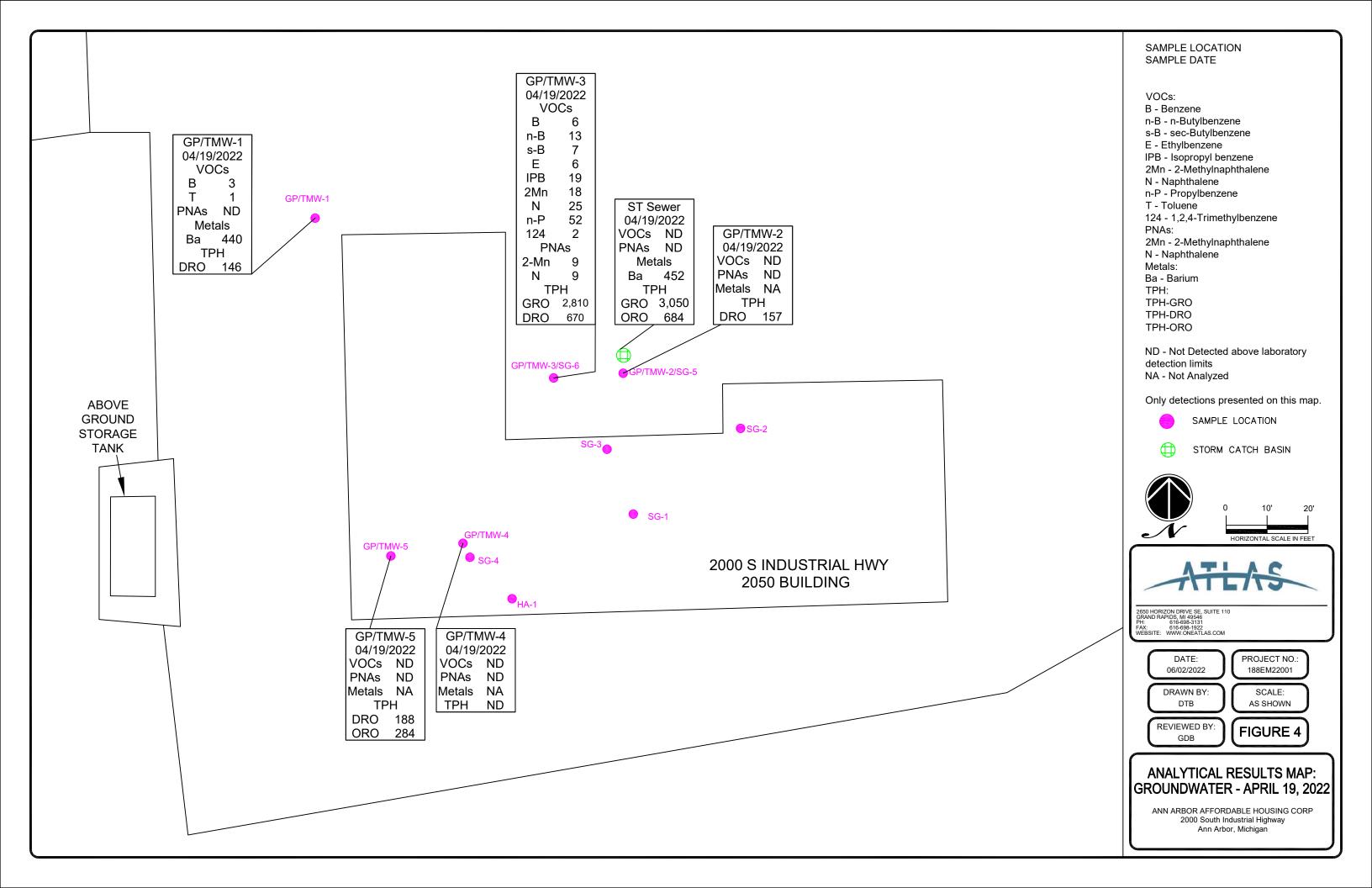
NA indicates EGLE has not developed $SSVIAC_{NR}/MSSL_{NR}/VIAP_{NR}$

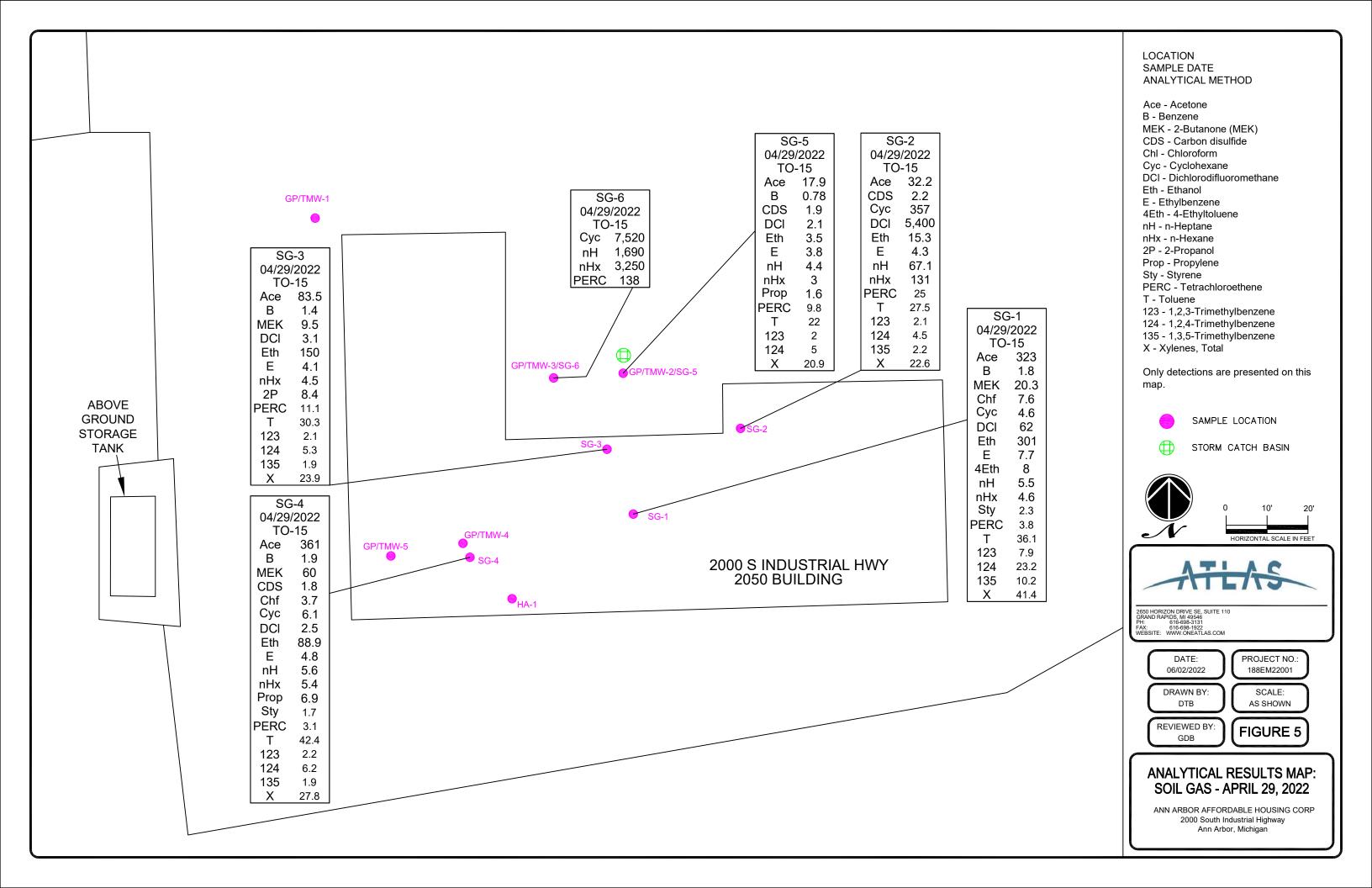
Green Shading indicates analyte "Not Detected" at concentration exceeding laboratory method detection limits (MDLs)

FIGURES


Source: USGS Topographic Map 7.5 Minute Ann Arbor East, Michigan Quadrangle dated 1965, photorevised 1983




Subject Vicinity Map Ann Arbor Affordable Housing Corp. 2000 South Industrial Highway Ann Arbor, Michigan PROJECT NO.: 188EM22001


DRAWN BY: AJT

APPENDIX A

Atlas Credentials

Gerard DeBusschere, CPG

Sr. Project Manager - Novi, Michigan

OFFICE LOCATION

Novi, Michigan

EDUCATION

BS, Geology, Wayne State University, 1973

Additional related seminars and classes (1992 - 2005)

CERTIFICATIONS

American Association of Petroleum Geologists (AAPG)

Certified Professional Geologist, AAPG#5369

Licensed Professional Geologist, State of Tennessee #2440

Certified Underground Storage Tank Professional State of Michigan #697

Certified DEQ Waterworks System Operator, Classification D-5, S-5 #16145

OSHA 29 CFR 1910.120 40-Hour / OSHA Annual 8-Hour Refresher

DOT 49 CFR 172.704 Hazardous Material Transport

Certified Adult CPR and First Aid

Behavioral Based Safety Training

Smith System® Driver Improvement Course

HIRE DATE 03/2017

EXPERIENCE PRIOR TO JOINING ATLAS 39

EXPERIENCE & RESPONSIBILITIES

Gerard serves as Senior Project Manager in ATC's Novi, Michigan office. He has diverse experience in the environmental and petroleum industries. As Senior Project Manager, Gerard is responsible for client interfacing, compliance review, regulatory reports, and work plans. As a professional geologist, he demonstrates a balanced scientific approach in conducting site investigations by integrating geology, geophysics, and environmental science.

During Gerard's years of experience in the environmental field, he has conducted Phase I and Phase II Environmental Site Assessments (ESAs), Baseline Environmental Assessments (BEAs), and Due Care Plans, as well as provided oversight for leaking underground storage tank (LUST) site assessments and closures.

PROJECT EXPERIENCE

Confidential Client, SW Michigan

The pipeline spill originated from a break in a 33" buried pipeline that transports crude oil from the Chicago area northeast through Michigan into Sarnia Ontario. The release originated in a wetland area and flowed overland until it reached a creek where it then flowed to the confluence of the creek and a major southwest Michigan river. Wrote, or cowrote the following plans and/or operating procedures that guided the response activities and which were incorporated into larger plans that were submitted to the United States Environmental Protection Agency (USEPA), Region V on-scene coordinator and other regulatory and non-regulatory agencies: Health and Safety Plan, Sampling and Analysis Plan, Oil Capture, Containment and Recovery Plan, Decontamination of Personnel and Equipment Plan and decontamination tracking forms, Backfill Plan and a variety of standard operating procedures to be used for the implementation of the various plans. Provided coordination and oversiaht citizen/landowner interface team, to provide for rapid response inspection and sample collection services for residential or commercial properties that were affected by, or suspected of being affected by the spill.

2015 Environmental Services ISID, SE Michigan District, former Oakland Appliance

The scope of services was to provide professional design services for the investigation/installation of a vapor intrusion (VI) mitigation system. ATC designed and installed a VI mitigation system design to provide a long term solution to address elevated VOC (TCE) concentrations in soil gas. Based on ATC's evaluation of the data, a cost

effective, two part design solution was developed, with a passive VI mitigation system in the eastern 2/3 of the site building, and an active system consisting of three suction points and a sized extraction fan to create negative sub-slab pressures in the western portion of the building. A

2017 Tank and Soil Removal ISID

Managed thirteen (13) Tank and Soil removal projects on behalf of EGLE/RRD between October 2017 and January 2021. Sites were identified by EGLE/RRD, and ATLAS acted as the primary contractor overseeing the excavation, transport and disposal of the orphan tanks and any associated impacted soils. Soil verification samples were collected from each excavation and project summary report was prepared for each.

Brownfield Redevelopment Project, Taylor, Michigan

Conducted Phase I and II ESAs at a former auto parts manufacturing facility and, based on the results of the Phase II ESA, determined that the site qualified as a facility. Prepared a Category N BEA and applied for Brownfield funding for the site. The BEA was subsequently affirmed, and grant monies awarded, which provided for the demolition of the former manufacturing facility and cleanup of the site. Provided environmental oversight during demolition of abandoned manufacturing facility. Prepared Remedial Action Plan (RAP) to obtain site closure for client.

Industrial Facility, Phase I and II ESAs, Due Care Plan, Hexavalent Chromium Assessment, South Haven, Michigan

Performed Phase I and II ESAs and, based on the results of the Phase II ESA, determined that the site qualified as a facility. Although client

did not qualify for BEA protection, prepared a Section 7a Due Care Plan for the site.

Prine Release Investigation, Tuscola County, Michigan

Provided oversight and management for the delineation of a brine plume using non-intrusive, geophysical methods. Confirmed the plume outline by installing groundwater monitoring wells; initiated the annual groundwater monitoring program. Prepared and submitted annual reports to the MDEQ, Office of Oil, and Gas & Minerals. Designed and submitted the brine recovery remediation system to client.

Confidential Client, Annual Water Quality Testing and Reporting, Various Sites, Michigan

Provide oversight and management for confidential client of annual water quality testing and reporting for seven Type II non-transient public water systems.

Confidential Client, Semi-Annual Discharge Sampling and Reporting, Detroit, Michigan

Assist confidential client comply with requirements for discharge to the Detroit Water and Sewerage Department (DWSD) combined system. Requirements include semi-annual sampling, the compiling of discharge data, and the submission of a Six-Month Report to the DWSD.

Confidential Client, Underground Utility Vault Cleanouts, Detroit, Michigan

Assist confidential client with scheduled and/or emergency responses to requests for vault cleanout to provide a clean and healthy work environment for client personnel. Vault cleanout requires confined space entry.

Various Clients, LUST Sites<mark>,</mark> Michigan

Provided consulting services for confidential insurance company who's trucking company client had overfilled an UST system, creating a release. Planned and provided oversight for the removal of three USTs, the excavation and disposal of a total of 3,380-tons of contaminated soil, the installation of a 3-compartment, fiberglass storage tank to replace the original system, and the restoration to the site to its original contours. Prepared a closure report which resulted in the successful closure of the release.

Petroleum Spill<mark>,</mark> Chesterfield Township, Michigan

Provided consulting services for confidential insurance company whose trucking company client had overturned a tank truck on I-94 in Chesterfield Township, spilling 4,000-gallons

of gasoline. Planned and provided oversight for the excavation and disposal of a total of 2,543-tons of contaminated soil; planned and conducted a subsurface investigation to verify that all impacted soil and groundwater had been successfully removed; prepared a closure report which resulted in the successful closure of the release.

Phase I ESA, Former MC (PC) ROW, Saline, Michigan

Performed site reconnaissance, historical research, and report preparation for former Michigan Central (Penn Central) right-of-way through the Village of Saline, Michigan. Recommended Phase II ESA based on adjoining property usage.

Oryx Energy/Sun E&P Company, Gulf of Mexico and Michigan

Responsible for subsurface geological characterization (site assessment) integrating geological and geophysical data. Conducted feasibility and risk assessment to determine degree of corporate participation. Coordinated and provided oversight for well construction, including lithology descriptions, porosity determinations, and water table elevations for proper screen placement. Prepared project summary reports documenting findings for client and Michigan Department of Natural Resources (MDNR).

ANR Storage Company, Michigan, Kansas, Texas

Responsible for subsurface geological characterization (site assessment) integrating geological and geophysical data. Designed and coordinated the construction of leak detection monitoring (observation) wells. Provided oversight for monitor (observation) well and injection well construction, including lithology descriptions, porosity determinations, and water table elevations for proper screen placement. Evaluated annual monitoring data to determine migration rate of hydrocarbon plume. Prepared project summary reports documenting findings for client and MDNR.

Ann O'Brien

Environmental Due Diligence Manager

OFFICE LOCATION

Novi, Michigan

EDUCATION

BS, Earth Science 1990 BS Geology 1992 Eastern Michigan University

SPECIALIZED TRAINING

40-Hour HAZWOPER Training 29 CFR 1910.120 OSHA

8-Hour HAZWOPER Refresher

HIRE DATE

05/2021

Prior ATC Employment 1996-2000

EXPERIENCE PRIOR TO JOINING ATLAS

20+

EXPERIENCE & RESPONSIBILITIES

Ann is the Environmental Due Diligence Manager for ATC Group Services LLC (ATC), she has over 20 years of comprehensive experience in the environmental consulting service industry. Ms. O'Brien's experience includes oversight of assessment projects including Phase I ESAs, Phase II Subsurface Investigations, BEAs, and Superfund Amendment Reauthorization Act Tier II reporting; and, MDEQ Part 201 Environmental Remediation and Part 213 Leaking Underground Storage Tank site investigations and closures. Resource Conservation and Recovery Act (RCRA) experience includes preparation and implementation of a post closure plan; RCRA Facility Investigation. Remedial activities include soil vapor extraction; air sparge; biostimulation; bioaugmentation; vacuum enhanced recovery; in-situ chemical oxidation, and, dual phase extraction system with horizontal well installation.

Ann has been responsible for reviewing site data, designing site assessment and remediation plans preparing work scopes, calculating associated costs, and managing work. These projects include the site assessment, remediation and site closure of properties with soil, soil vapor, and groundwater impacted by chemical compounds associated with sites including industrial, manufacturing sites, landfills, and commercial, and governmental properties.

PROJECT EXPERIENCE

Phase I and II Environmental Site Assessments (ESA) - Numerous Clients, Michigan

Completion of Phase I and Phase II ESAs for residential, commercial and industrial clients within Michigan. Duties and responsibilities included proposal preparation, project set up, client/site owner liaison, property reconnaissance, regulatory records review,

Underground Storage Tank (UST) and Leaking Underground Storage Tank (LUST) Sites, Michigan, Ohio, Indiana

Environmental/Petroleum Manager primary point of contact, responsible for oversight of environmental staff, and ultimately responsible for a significant portion of coordination for over multiple LUST sites and other regulated facilities in Michigan, Ohio, and Indiana. Primary role responsibilities include construction oversight, management and documentation of UST removal and/or upgrade projects. These projects included management of preliminary pre-construction site assessments; estimation excavation and dewatering requirements and associated management costs: implementing environmental construction permit acquisitions, and associated compliance monitoring and Projects included reporting. also comprehensive senior technical review of subcontractor bid specifications and pricing

documents; human health risk assessments; and the preparation and submittal of UST removal notifications and reports in order to maintain regulatory compliance.

Part 213 Investigations, Numerous Clients Michigan

Completion of MDEQ Part 213 Leaking Underground Storage Tank Closure reports for sites with reported petroleum releases. Tasks included supervision of UST removal activities; collection of soil; quarterly groundwater monitoring events and data evaluation, monthly LNAPL monitoring events, system operation and maintenance and development of corrective action plans.

Part 201 State of Michigan: Numerous Clients Michigan

Project manager responsible for the coordination, planning and implementation of environmental services. Primary responsibilities included preparing cost estimates, contractor procurement, work plan review, management of field staff and communication. UST Removal, excavation, soil and ground water investigation. Reporting requirements to maintain regulatory compliance.

KEY PERSONNEL

Ryann Scott

Project Scientist

OFFICE LOCATION

Novi, Michigan

EDUCATION

BS, Environmental Geosciences, Michigan State University, 2003

CERTIFICATIONS

Environmental Professional per EPA's "All Appropriate Inquiry Rule"

40-Hour Hazardous Waste Operations and Emergency Response Certification (OSHA)\8-Hour Refresher

AHERA Asbestos Building Inspector; State of Michigan EPA Accredited Asbestos Inspector, MI#A55737

Risk-based Corrective Action at Petroleum Release Sites

Resource Conservation and Recovery Act (RCRA) Hazardous Waste Training

HIRE DATE

10/2019

EXPERIENCE PRIOR TO JOINING ATLAS

15

EXPERIENCE & RESPONSIBILITIES

Ryann Scott is a Project Scientist with Atlas Technical Consultants LLC (Atlas) and has over 17 years of experience in the environmental consulting field. Ms. Scott's experience includes assessment projects consisting of Phase I Environmental Site Assessments (ESAs), Phase II Subsurface ESAs, Transaction Screens, Baseline Environmental Assessments (BEAs), Due Care Plans (DCPs), Restrictive Covenants, and extensive experience with the Michigan Department of Environment, Great Lakes, and Energy (EGLE) Part 201 Environmental Remediation and Part 213 Leaking Underground Storage Tank site investigations and closures. Ms. Scott also has experience with Resource Conversation and Recovery Act (RCRA) Corrective Actions including generation of Description of Current Conditions and Interim Measures Report (CCR) and RCRA Corrective Action Facility Investigation Work Plan (RFI).

PROJECT EXPERIENCE

Phase I/ Phase II Environmental Site Assessments (ESAs)

Completed Phase I ESAs, some of which have included asbestos, lead based paint, radon and mold sampling. Types of ESAs include:

- Commercial and industrial properties throughout Michigan.
- Various Industrial / manufacturing / automotive facilities throughout Michigan.
- Retail businesses and restaurants throughout Michigan.
- Various gasoline stations and automotive related projects throughout Michigan.
- Numerous parcels of undeveloped and/or agricultural property of various sizes in Michigan.
- Apartment complexes and various apartment buildings throughout Michigan.

Underground Storage Tank Closures

- Completion of EGLE Part 213 Leaking Underground Storage Tank (LUST) Closure Reports for sites with reported petroleum releases.
- Tasks completed included preparation of various reports required by EGLE in order to keep client in compliance with applicable regulations; supervision of UST removal activities; collection of verification soil remediation samples; groundwater monitoring events and data evaluation; monthly light nonaqueous phase liquid (LNAPL) monitoring events; system operation

and maintenance; development of corrective action plans; and preparation of Conceptual Site Models (CSMs).

RCRA Facility Investigation

Currently serving as project manager for CCR and RFI of a former chemical research and development facility encompassing approximately acres in the metropolitan Detroit area. Scoped multiple phases of the RFI in a strategically-implemented stepwise progression, with focus on the eastern boundary of the property, at the direction of EGLE. Emphasis was placed upon the eastern boundary due to the presence of volatile organic chemicals in groundwater and soil gas, particularly trichloroethylene (TCE), and its potential for migrating towards a residential community located immediately east of the facility boundary.

Madelyn Haas

Field Geologist

OFFICE LOCATION

Novi, Michigan

EDUCATION

BS, Environmental Sustainability and Resource Management, Auburn Hills, Michigan

CERTIFICATIONS

40-hour Hazardous Waste Training Certification (OSHA), original certification acquired 8-hour Refresher

CPR/AED First Aid

HIRE DATE

06/2021

EXPERIENCE PRIOR TO JOINING ATLAS

EXPERIENCE & RESPONSIBILITIES

Madelyn is a Field Geologist for Atlas' Novi, Michigan office. She has 1 year of experience in the petroleum and environmental consulting industries. She is responsible for the facilitation and completion of fieldwork, emergency response field investigations and remediation, and providing project oversight for various remediation and drilling jobs.

She has experience in groundwater sampling equipment and procedures. She has had the opportunity to learn the coordination of monitoring well installation, and collection of soil samples for various projects including LUST projects and Phase II site assessments. She has been involved in the sampling of various soil vapor intrusion points both indoor and outdoor. Ms. Haas also has experience with remediation system sampling.

She has also been trained on oversight of UST removal and sampling, soil excavation oversight and coordination with on-site contractors, and underground utility vault cleanouts. She has been involved in AT&T vault sampling events.

PROJECT EXPERIENCE

Leaking Underground Storage Tank Response Investigation and Remediation / Retail Petroleum Clients throughout Michigan / 2021-Present. Field Geologist for Leaking Underground Storage Tank (LUST) projects, including removal and in-place closures, contaminant delineation, and remediation in accordance with Risk-Based Corrective Action (RBCA) procedures. Implemented the investigation, delineation and remediation of phase separated, adsorbed, and dissolved phase hydrocarbon plumes from the release of gasoline and diesel fuel at retail petroleum facilities.

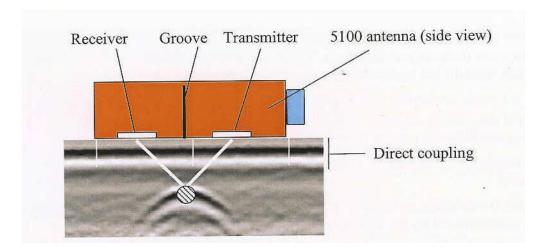
Emergency Spill Response Investigations and Remediation / Transportation Clients throughout Michigan / 2021 – present, provided oversight, sampling and reporting for Emergency Response Spill Cleanup projects. The cleanups involve interfacing and coordination with the client, and remediation contractors.

APPENDIX B

Geophysical Survey Report

April 15, 2022

Gerard DeBusschere Atlas 46555 Humboldt Drive, Suite 100 Novi, MI 48377


Survey Site: City of Ann Arbor-2000 South Industrial Drive-Ann Arbor, MI

Project Objective:

Utilize GPR/EM to investigate for the location of any obstructing utilities in the areas of the proposed soil boring locations along with a 50 feet perimeter of the existing building for evidence of remaining underground storage tanks.

GPR Information and Background:

GPR has been used extensively in the past for geological and archeological exploration and mapping; however, it has only been since 2001 that GPR had the capability to image shallow targets. The system used for this project has the ability to image targets to a depth of 12 feet with an accuracy of \pm 2 inches. The 350 MHz antenna broadcasts a microwave energy pulse of less than $1/6^{th}$ watt at a rate of 100 ns. This energy pulse is timed as it propagates through a material noting when a return pulse arrives. The time and strength of the return pulse is captured and analyzed and interpreted graphically. This process is shown in the figure of a 1500 MHz antenna below.

Project Procedures:

Scans were completed at 3-5 feet intervals from west to east and from south to north throughout the survey area.

Ryann Scott of Atlas was on site to verify proposed boring locations.

All data was collected on April 12, 2022.

Project Results:

The data collected determined no anomalies indicative of remaining underground storage tanks in the survey area. The following utilities were marked on site: sewer in green, water in blue, electric in red, and natural gas in yellow. There was one unknown utility found just below the concrete floor near one of the proposed boring locations. This unknown utility was marked in red crayon.

All results of the data collected are documented in the attached pictures.

This report provided by FMCI is provided solely for illustration and information purposes. FMCI is not responsible for any loss or damage caused, arising out of the use of, or reliance on this report or the data collected, and this report is not to be construed as a warranty or guarantee on the part of FMCI.

Sincerely,

Nick Schwartz

Facility Management Consultants International

nick@facilitiescompliance.com

OLAN ST

(616) 730-3331

Image shows storm sewer marked in green.

Image shows storm sewer marked in green and cleared boring location.

Image shows electric marked in red.

Image shows cleared boring location.

Image shows cleared boring location in orange and unknown utility marked in red crayon.

Image shows electric marked in red.

Image shows sewer marked in green.

Image shows sewer marked in green.

Image shows natural gas marked in yellow.

Image shows sewer marked in green.



Image shows electric marked in red and water marked in blue.

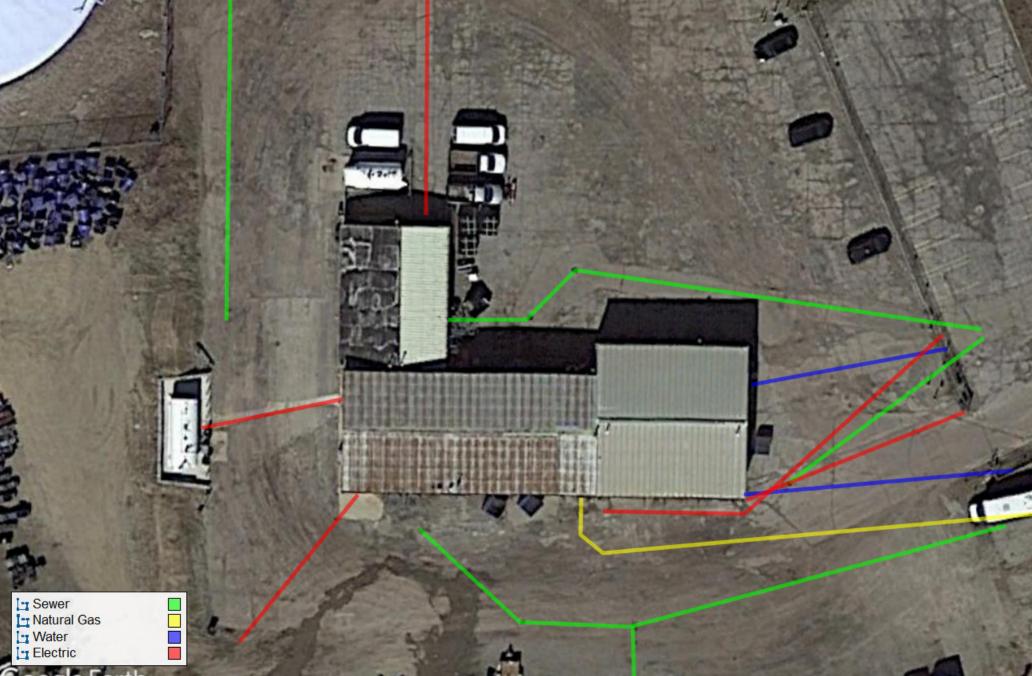

Image shows electric marked in red and water in blue.

Image shows water marked in blue.

APPENDIX C

Soil Boring Logs

Boring Number: GP/TMW-1

Page: 1 of 1

Start Date: <u>04/19/22</u>

End Date: 04/19/22

46555 Humboldt Drive

Suite 100

Novi, MI 48377

Project Name: Ann Arbor Affordable Housing Corp Site Location: 2050 S. Industrial Highway

City, State: Ann Arbor, Michigan

Casing Diameter: 2"

Casing: Schedule 40 PVC Length: 10'

Phone: (248) 669-5140

Boring Diameter: 4" HA, 2.25" MC, 4.25" HSA **Drilling Method:** Hand Auger/GeoProbe/Auger Screen Slot Size: 0.010"

Screen Diameter: 2" Length: 5'

FEET (bgs)	SAMPLE TYPE	SAMPLE INTERVAL (bgs)	SAMPLE TIME	Rec.	Graphic	LITHOLOGY DESCRIPTION	PID PPMV	Well Construction
0						Asphalt		◆ Asphalt
2						SAND - fine to medium grained, brown, damp	0.0	Filter Sand Bentonite
3—————————————————————————————————————	Grab	3-4'	0915	100%		SAND - fine to medium grained, brown, wet	0.0	Well Casing
5 					-	SAND - fine to medium grained, brown, saturated	0.0	Filter Sand
7—— 8——				100%	Ξ	SANDY CLAY - fine to medium grained sand, trace gravel, gray, damp/wet	0.0	
9				100%		SANDY CLAY - fine to medium grained sand, trace gravel, brown/gray,damp/wet	0.0	-
11—— 12—— 13——				100%		SILTY CLAY - with little fine to medium grained sand, trace gravel, dense, moist, semi-plastic	0.0	Bentonite
15			<u> </u>	l	1	EOB @ 15'		

(HA) = HAND AUGER	Borehole Observations	(Rec.) = RECOVERY	(EOB) = END OF BORING
(AK) = AIR KNIFE (DS) = DISTURBED SAMPLE	Depth to water during drilling: NA	(bgs) = Below Ground Surface	<u>_</u>
(GP) = GEOPROBE	Depth to water after drilling: NA	(NR) = NO RECOVERY	Water Table
— Clay ເວັດ Gravel	Backfill: NA	(NA) = NOT APPLICABLE	
Logged by: RS	Drilling Co.: Fibertec	Driller: Rhex	
Drawn by: RS	Drill Rig Type: Hand Auger + GeoProbe 6620	Assistant: Kody	
Checked by:			

Boring Number: GP/TMW-2

Page: 1 of 1

46555 Humboldt Drive

Project Name: Ann Arbor Affordable Housing Corp.

Start Date: <u>04/19/22</u> Casing: Schedule 40 PVC

Suite 100

Site Location: 2050 S. Industrial Highway

End Date: 04/19/22

City, State: Ann Arbor, Michigan

Casing Diameter: 2"

Length: 10'

Novi, MI 48377 Phone: (248) 669-5140 Boring Diameter: 4" HA, 2.25" MC, 4.25" HSA Drilling Method: Hand Auger/GeoProbe/Auger

Screen Slot Size: 0.010" Screen Diameter: 2"

Length: 5'

FEET (bgs)	SAMPLE TYPE	SAMPLE INTERVAL (bgs)	SAMPLE TIME	Rec.	Graphic	LITHOLOGY DESCRIPTION	PID PPMV	Well Construction
0						Asphalt	0.0	Asphalt
1							0.0	Filter Sand
2						SANDY CLAY - fine to medium grained sand and gravel, brown,	0.0	<u> </u>
3				100%		damp	0.0	Bentonite
4	Grab	(3.5-4.5')	1011		Ē		0.0	— Well Casing
5					0.000	GRAVEL - large, saturated	0.0	
6						-	0.0	
7				4000/		SANDY CLAY - fine to coarse grained sand with some gravel,	0.0	Well Screen
8				100%		gray/brown, saturated	0.0	_
9							0.0	_
10-				100%		SILTY CLAY - with fine to medium grained sand, gray, wet	0.0	
11				100 /0		SILT FOLAT - With line to medium grained sand, gray, wet	0.0	
12							0.0	_
13							0.0	_
14							0.0	_
15							0.0	Bentonite
16				100%		SILTY CLAY - with little fine grained sand and trace gravel, brown/gray, dense, semi-plastic, moist	0.0	_
17							0.0	_
18							0.0	_
19							0.0	_
20 —					E	EOB @ 20'		

(HA) = HAND AUGER	Borehole Observations	(Rec.) = RECOVERY	(EOB) = END OF BORING	
(AK) = AIR KNIFE (DS) = DISTURBED SAMPLE	Depth to water during drilling: NA	(bgs) = Below Ground Surface	<u></u>	
(GP) = GEOPROBE	Depth to water after drilling: NA	(NR) = NO RECOVERY	Water Table	
— Clay	Backfill : NA	(NA) = NOT APPLICABLE		
Logged by: RS	Drilling Co.: Fibertec	Driller: Rhex		
Drawn by: RS	Drill Rig Type: Hand Auger + GeoProbe 6620	Assistant: Kody		
Checked by:				

Boring Number: GP/TMW-3

Page: 1 of 1

46555 Humboldt Drive

Phone: (248) 669-5140

Project Name: Ann Arbor Affordable Housing Corp.

Start Date: <u>04/19/22</u> Casing: Schedule 40 PVC End Date: 04/19/22

Suite 100

Site Location: 2050 S. Industrial Highway

Casing Diameter: 2"

Length: 10'

Novi, MI 48377

City, State: Ann Arbor, Michigan Boring Diameter: 4" HA, 2.25" MC, 4.25" HSA

Drilling Method: Hand Auger/GeoProbe/Auger

Screen Slot Size: 0.010"

Screen Diameter: 2"

Length: 5'

EET ogs)	SAMPLE TYPE	SAMPLE INTERVAL (bgs)	SAMPLE TIME	Rec.	Graphic	LITHOLOGY DESCRIPTION	PID PPMV	(Well Construction
						Asphalt	0.0		← Asphalt
				100%	* 500	FILL SAND and CRUSHED LIMESTONE			Aspilait
1				100%	18,0	CLAY - black/gray with some coarse grained sand	1.5		Filter Sand
						SANDY CLAY - black with fine grained sand and some gravel, little			Filler Saliu
2				100%	=	debris (wood chips), moist	47.6		
						debris (wood erilps), moist			■ Bentonite
3					=				Bontonia
				100%		SILTY CLAY - gray/green with little fine grained sand, dense,	362.1		
4					=	moist, semi-plastic		4	Well Casing
	Grab	(4-5')	1105		=				9
		,							
				100%	-	SANDY CLAY - gray/black, some silt and fine to medium grained	776.5		
6				100%	Ě	sand and little gravel, saturated	110.5		
7									Well Screen
_									
8							132.0		
0				100%		SAND - coarse grained with gravel, brown/gray, saturated			
9				10070		or with source gramou man graver, promingray, saturated			
							58.2		
				100%		SILTY SAND - very fine grained sand, brown, saturated	27.2		
1									
2					=		5.6		
							5.0		
3									
					=				
4									
					$ \equiv$				
						SILTY CLAY - with little fine grained sand and trace gravel,	1.4	+	Bentonite
•				100%	=	brown/gray, dense, semi-plastic, moist			
6					=				
7					=				
7					ᆖ				
8					Ē				
					E		0.0		
9					E				
~									
		i			_	1			

(HA) = HAND AUGER	Borehole Observations	(Rec.) = RECOVERY	(EOB) = END OF BORING
(AK) = AIR KNIFE (DS) = DISTURBED SAMPLE	Depth to water during drilling: NA	(bgs) = Below Ground Surface	<u></u>
(GP) = GEOPROBE	Depth to water after drilling: NA	(NR) = NO RECOVERY	Water Table
— Clay ్ట్ర్ఫ్ Gravel	Backfill : NA	(NA) = NOT APPLICABLE	
Logged by: RS	Drilling Co.: Fibertec	Driller: Rhex	
Drawn by: RS	Drill Rig Type: Hand Auger + GeoProbe 6620	Assistant: Kody	
Checked by:		<u> </u>	

Boring Number: GP/TMW-4

Page: 1 of 1

46555 Humboldt Drive

Project Name: Ann Arbor Affordable Housing Corp.

Start Date: <u>04/19/22</u>

End Date: 04/19/22

Suite 100

Site Location: 2050 S. Industrial Highway

Casing: Schedule 40 PVC

10'

Length:

Novi, MI 48377

City, State: Ann Arbor, Michigan

Casing Diameter: 2" Screen Slot Size: 0.010"

Phone: (248) 669-5140

Boring Diameter: 4" HA, 2.25" MC, 4.25" HSA **Drilling Method:** Hand Auger/GeoProbe/Auger

Screen Diameter: 2" Length: 5'

FEET (bgs)	SAMPLE TYPE	SAMPLE INTERVAL (bgs)	SAMPLE TIME	Rec.	Graphic	LITHOLOGY DESCRIPTION	PID PPMV	Well Construction
0						Concrete		◆ Concrete
1						SANDY CLAY - fine to medium grained sand and gravel, dk brown	1.8	
2				100%		SILTY CLAY - black/green with trace sand and gravel, dense, moist, semi-plastic	95.1	Filter Sand Bentonite
4	Grab	3-4'	0915	100%		SANDY CLAY - dark gray with fine to medium grained sand and gravel, moist	291.4	→ Well Casing
6				100%	•	SAND - coarse grained with gravel and some clay, gray, saturated	12.4	Filter Sand
7				100%		osarco granou mar graver and como ciaji, graji, catalated	1.2	Well Screen
9	-			100%		SILTY SAND - fine grained sand with little clay, gray, saturated	0.0	

EOB @ 10'

(HA) = HAND AUGER	Borehole Observations	(Rec.) = RECOVERY	(EOB) = END OF BORING
(AK) = AIR KNIFE (DS) = DISTURBED SAMPLE	Depth to water during drilling: NA	(bgs) = Below Ground Surface	_
(GP) = GEOPROBE	Depth to water after drilling: NA	(NR) = NO RECOVERY	Water Table
Clay ເວັດ Gravel	Backfill : NA	(NA) = NOT APPLICABLE	
Logged by: RS	Drilling Co.: Fibertec	Driller: Rhex	
Drawn by: RS	Drill Rig Type: Hand Auger + GeoProbe 6620	Assistant: Kody	
Checked by:			

46555 Humboldt Drive

Monitoring Well Log

Page: 1 of 1

End Date: 04/19/22

Boring Number: GP/TMW-5

Project Name:Ann Arbor Affordable Housing Corp.Start Date:04/19/22Site Location:2050 S. Industrial HighwayCasing:Schedule 40 PVC

Suite 100 City, State: Ann Arbor, Michigan Casing Diameter: 2" Length: 10'

Novi, MI 48377

Boring Diameter: 4" HA, 2.25" MC, 4.25" HSA

Phone: (248) 669-5140

Drilling Method: Hand Auger/GeoProbe/Auger

Screen Slot Size: 0.010"

Screen Diameter: 2" Length: 5'

FEET (bgs)	SAMPLE TYPE	SAMPLE INTERVAL (bgs)	SAMPLE TIME	Rec.	Graphic	LITHOLOGY DESCRIPTION	PID PPMV	Well Construction
0-						Concrete		Concrete
2				100%	11 11 11	SILTY CLAY - black and green with little sand, dense, moist, semi- plastic	0.2 1.5	Filter Sand Bentonite
4				100%		SILTY SAND - fine grained sand with little gravel, gray with some	11.2 33.3	Well Casing
5——	Grab	4-5'	1316		_	black, damp/wet	1.9	Filter Sand
7				100%		SAND - coarse grained with gravel and some clay, gray (black 5-5.5'), saturated	1.2	Well Screen
8				100%			0.0	_
10				10070		SILTY SAND - fine grained sand with little clay, gray, saturated	0.0	

EOB @ 10'

(HA) = HAND AUGER	Borehole Observations	(Rec.) = RECOVERY	(EOB) = END OF BORING
(AK) = AIR KNIFE (DS) = DISTURBED SAMPLE	Depth to water during drilling: NA	(bgs) = Below Ground Surface	_
(GP) = GEOPROBE	Depth to water after drilling: NA	(NR) = NO RECOVERY	Water Table
Clay Cravel	Backfill : NA	(NA) = NOT APPLICABLE	
Logged by: RS	Drilling Co.: Fibertec	Driller: Rhex	
Drawn by: RS	Drill Rig Type: Hand Auger + GeoProbe 6620	Assistant: Kody	
Checked by:			

1	TL	45					Soil B	oring l	Log
46555 H	Humboldt D	rive				Ann Arbor Affordable Housing Corp. 2050 S. Industrial Highway Boring Number: I Start Date: Casing: N)4/19/22	E	Page: 1 of 1 End Date: 04/19/22
Suite 10	00		C	ity, St	ate:	Ann Arbor, Michigan Casing Diameter: N		Length:	: <u>NA</u>
Novi, M	II 48377		Boring	Diame	eter:	4" HA Screen Slot Size: 1	NA		
Phone:	(248) 669-	5140	Drillin	g Meth	nod:	Hand Auger Screen Diameter: 1	NA	Length:	: <u>NA</u>
FEET (bgs)	SAMPLE TYPE	SAMPLE INTERVAL (bgs)	SAMPLE TIME	Rec.	Graphic	LITHOLOGY DESCRIPTION		PID PPMV	Well Construction
0						Concrete			Concrete
2	Grab	2-3'	1352	100%		SAND - medium to coarse grained with some clay, mo	ist, brown	0.2 2.1	
3—— 4——	S. a.s	_ ~	.552	100%	[իկկդկ	SILTY CLAY - brown/gray with little sand, dense, semi- @ 5'	olastic, wet	0.5	Bentonite
5						EOB @ 5'			
6—— 7—— 8—— 9——									- - -
10									
(HA) = I	HAND AUG	SER				,	Rec.) = RECOV	ERY	(EOB) = END OF BORING
		(DS) = DISTU	JRBED SAI	MPLE			bgs) = Below Gr		
, ,	GEOPROB Clay	E Grave				<u> </u>	NR) = NO RECO NA) = NOT APF		Water Table
	ged by:	.040	1			Drilling Co.: Fibertec	Driller:		
	awn by:					Drill Rig Type: Hand Auger	Assistant:		
	ked by:	· · •					Assistant.	,	

Soil Gas Monitoring Point Log

Boring Number: SG-5 (GP/TMW-2)

Page: 1 of 1 End Date: 04/19/22

Project Name: Ann Arbor Affordable Housing Corp.

Site Location: 2050 S. Industrial Highway

Casing: Teflon Tubing

Start Date: <u>04/19/22</u>

Suite 100 Novi, MI 48377

46555 Humboldt Drive

City, State: Ann Arbor, Michigan

Casing Diameter: 1/4" Tubing Length: 3'

Boring Diameter: $\underline{4"}$ HA, $\underline{2.25"}$ MC, $\underline{4.25"}$ HSA Screen Slot Size: 0.010"

Phone:	: (248) 669-	5140	Drillin	g Met	hod:	Hand Auger/GeoProbe/Auger Screen Diameter: 1"	'	Length	n: <u>6"</u>	
FEET (bgs)	SAMPLE TYPE	SAMPLE INTERVAL (bgs)	SAMPLE TIME	Rec.	Graphic	LITHOLOGY DESCRIPTION		PID PPMV	Well Construction	
0	<u> </u>					Asphalt		0.0	← Asphalt	
1	<u> </u>							0.0	1/4" Teflon	
2						SANDY CLAY - fine to medium grained sand and grave	el, brown,	0.0	Tubing Bentonite	
3 —					100%		damp		0.0	Screen (3-3.5')
4	<u> </u>							0.0	Filter Sand	
<u> </u>					0.000	GRAVEL - large, saturated		0.0		
6					:60			0.0		
7 —	<u> </u> 			100%		SANDY CLAY - fine to coarse grained sand with some	e gravel,	0.0		
8				100%	量	gray/brown, saturated		0.0	Bentonite	
9 ——	1							0.0		
)——	1					SILTY CLAY - with fine to medium grained sand, gray, wet		0.0		
11 ——	<u> </u>			100%				0.0		
12	1							0.0		
13	•							0.0		
14	<u> </u>							0.0		
<u> </u>	•							0.0		
16 ——	†			100%		SILTY CLAY - with little fine grained sand and trace of brown/gray, dense, semi-plastic, moist	gravel,	0.0		
17 ——	†					biowil/gray, delise, serii-piastic, moist		0.0		
18 ——	<u> </u>				الللا		-	0.0		
19——					<u> Մ Մ Մ Մ Մ Մ Մ Մ Մ Մ Մ Մ Մ Մ Մ Մ Մ Մ </u>			0.0		
						EOB @ 20'				
						LOD @ 20				
. ,	HAND AUG					,	ec.) = RECOVE		(EOB) = END OF BORING	
	AIR KNIFE GEOPROB			MPLE		- I	gs) = Below Gro R) = NO RECO		e Water Table	
	Clay	Grave	l			Backfill : NA (N	A) = NOT APPL			
	gged by: rawn by:					Drill Rig Type: Hand Auger + GeoProbe 6620	Driller: <u>F</u> Assistant: ^k			
	cked by:					-	_			

Soil Gas Monitoring Point Log

Boring Number: SG-6 (GP/TMW-3)

Page: 1 of 1

46555 Humboldt Drive

Project Name: Ann Arbor Affordable Housing Corp.

Start Date: <u>04/19/22</u>

End Date: 04/19/22

Site Location: 2050 S. Industrial Highway

Casing: Teflon Tubing

Suite 100 Novi, MI 48377 City, State: Ann Arbor, Michigan

Casing Diameter: 1/4" Tubing Screen Slot Size: 0.010"

Length:

Phone: (248) 669-5140

Drawn by: RS

Checked by:

Boring Diameter: 4" HA, 2.25" MC, 4.25" HSA **Drilling Method:** Hand Auger/GeoProbe/Auger

Screen Diameter: 1" 6" Length:

Assistant: Kody

FEET SAM (bgs) TY		SAMPLE TIME	Rec.	Graphic	LITHOLOGY DESCRIPTION	PID PPM		
0					Asphalt	0.0	0 Asphalt	
1-			100%	200	FILL SAND and CRUSHED LIMESTONE CLAY - black/gray with some coarse grained san	1.5	5 Bentonite	
2 ——			100%		SANDY CLAY - black with fine grained sand and some gr debris (wood chips), moist	avel, little 47.0	1/4" Teflon	
3			100%		SILTY CLAY - gray/green with little fine grained sand, of moist, semi-plastic	dense, 362.	Screen (3-3.5 Filter Sand	
6			100%		SANDY CLAY - gray/black, some silt and fine to medium sand and little gravel, saturated	grained 776	3.5	
8—			4000/			132	2.0	
9			100%		SAND - coarse grained with gravel, brown/gray, satu	58.2	2 Bentonite	
11			100%		SILTY SAND - very fine grained sand, brown, satura	ated 27.2	2	_
12 ——						5.6	6	
14			100%		SILTY CLAY - with little fine grained sand and trace g brown/gray, dense, semi-plastic, moist	ravel, 1.4	4	_
17 ——				<u> </u>		0.0	0	
20				_	EOB @ 20'			
(HA) = HANE	AUGER					c.) = RECOVERY	(EOB) = END OF BORIN	iG
. ,	NIFE (DS) = DIST	URBED SA	MPLE		, u	s) = Below Ground So R) = NO RECOVERY		
(GP) = GEOI	Grav	el				() = NOT APPLICABL		

Drill Rig Type: Hand Auger + GeoProbe 6620

APPENDIX D

Laboratory Analytical Reports

QUANTUM LABORATORIES, INC. 28221 Beck Road • Suite A-11 Wixom, Michigan 48393 248-348-TEST or 248-348-8378

ANALYTICAL REPORT

For: Atlas Technical Consultants (ATLAS)

46555 Humboldt Dr. Ste. 100

Novi MI 48377

Attn: Mr. Gerry DeBusschere

Report Number: 12245 Report Date: May 2, 2022

Project Name: Ann Arbor Housing
Project Number: 188EM22001

Page: 1 of 83

248-669-5140 Fax: 248-669-5147

Sample Description

Sixteen (16) samples reported to be Soil (8) and Water (8) and identified as "Ann Arbor Housing", 2050 S. Industrial Hwy., Ann Arbor, MI, 4/19/22, Grab and:

1. GP/TMW-1, 0945 (Water)

2. GP/TMW-2, 1040 (Water)

3. GP/TMW-3, 1135 (Water)

4. GP/TMW-4, 1243 (Water)

5. GP/TMW-5, 1350 (Water)

6. ST Sewer, 1202 (Water)

7. DUP, 0000 (Water)

8. GP/TMW-1, 3-4', 0915 (Soil)

9. GP/TMW-2, 3.5-4.5', 1011 (Soil)

10. GP/TMW-3, 4-5', 1105 (Soil)

11. GP/TMW-4, 3-4', 1212 (Soil)

12. GP/TMW-5, 4-5', 1316 (Soil)

13. HA-1, 2-3', 1352 (Soil)

14. Dup, 0000 (Soil)

15. ST Sewer Sediment, 1205 (Soil)

16. Trip Blank (Water)

Analysis Requested

Chemical Analysis per SW-846 (SW) for:

- 1. Volatile Organic Compounds (VOC), Methods 8260B and 5035 (Soil) (All Samples)
- 2. Semi-Volatile Organic Compounds (SVOC), Method 8270C (Samples 1-15)
- 3. Total Petroleum Hydrocarbons (TPH) for:
 - a) Gasoline Range Organics (GRO), Methods 8015C and 8260B, Modified (Samples 2-7, 9-12, 14 and 15)
 - b) Diesel Range Organics (DRO), Methods 8015C and 8270C, Modified (Samples 1-12, 14 and 15)
 - c) Oil Range Organics (ORO), Method 8015C and 8270C, Modified (Samples 1-12, 14 and 15)
- 4. 10 Michigan Metals (Samples 1, 6, 8 and 15)
 - a) Arsenic, Method 7010
 - b) Barium, Method 7010
 - c) Cadmium, Method 7010
 - d) Chromium, Method 7010
 - e) Copper, Method 7010

- f) Lead, Method 7010
- g) Mercury, Method 7470A (Water) or Method 7471B (Soil)
- h) Selenium, Method 7010
- i) Silver, Method 7010
- j) Zinc, Method 7010

Report Number: Report Date:

Project Name: Project Number: Page:

12245 May 2, 2022 Ann Arbor Housing 188EM22001 2 of 83

Analytical Results

Sample Description:	GP/TMW-1, ()945, 4/19/22				
Laboratory ID:	12245-1	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	50	μg/L	04/26/22	BD	
Benzene	3	1	μg/L	04/26/22	BD	
Bromobenzene	Not Detected	1	μg/L	04/26/22	BD	
Bromochloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromodichloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromoform	Not Detected	1	μg/L	04/26/22	BD	
Bromomethane	Not Detected	5	μg/L	04/26/22	BD	
2-Butanone (MEK)	Not Detected	25	μg/L	04/26/22	BD	
n-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
sec-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
tert-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Carbon disulfide	Not Detected	5	μg/L	04/26/22	BD	
Carbon tetrachloride	Not Detected	1	μg/L	04/26/22	BD	
Chlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Chloroethane	Not Detected	5	μg/L	04/26/22	BD	
Chloroform	Not Detected	1	μg/L	04/26/22	BD	
Chloromethane	Not Detected	5	μg/L	04/26/22	BD	
2-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
4-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
Dibromochloromethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	0.2	μg/L	04/26/22	BD	
Dibromomethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,4-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Dichlorodifluoromethane	Not Detected	5	μg/L	04/26/22	BD	
1,1-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
cis-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
trans-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
2,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
continued						

Internal Standard results outside of acceptance limits

QC spike recovery outside of acceptance limits RPD outside of acceptance limits

Reporting limit is elevated Result is from a dilution Result should be considered estimated

M Matrix interference observed
F Matrix Spike four times rule applied
C See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 3 of 83

Sample Description:	GP/TMW-1, ()945, 4/19/22				
Laboratory ID:	12245-1	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	0.2	μg/L	04/26/22	BD	
Hexachlorobutadiene	Not Detected	0.2	μg/L	04/26/22	BD	
2-Hexanone	Not Detected	50	μg/L	04/26/22	BD	
Isopropyl benzene	Not Detected	5	μg/L	04/26/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	50	μg/L	04/26/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	5	μg/L	04/26/22	BD	
Methylene chloride	Not Detected	5	μg/L	04/26/22	BD	
2-Methylnapthalene	Not Detected	5	μg/L	04/26/22	BD	
Naphthalene	Not Detected	5	μg/L	04/26/22	BD	
n-Propyl benzene	Not Detected	1	μg/L	04/26/22	BD	
Styrene	Not Detected	1	μg/L	04/26/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
Tetrachloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Tetrahydrofuran	Not Detected	90	μg/L	04/26/22	BD	
Toluene	1	1	μg/L	04/26/22	BD	
1,2,3-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,2,4-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,1,1-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
Trichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Trichlorofluoromethane	Not Detected	1	μg/L	04/26/22	BD	
1,2,3-Trichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,2,4-Trimethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
1,3,5-Trimethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Vinyl Acetate	Not Detected	100	μg/L	04/26/22	BD	
Vinyl chloride	Not Detected	1	μg/L	04/26/22	BD	
Xylene (Total)	Not Detected	3	μg/L	04/26/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	101%	-	% Recovery	04/26/22	BD	
Toluene-d8	103%	-	% Recovery	04/26/22	BD	
4-Bromofluorobenzene	104%	-	% Recovery	04/26/22	BD	
continued						

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 4 of 83

Sample Description:	GP/TMW-1, ()945, 4/19/22				
Laboratory ID:	12245-1	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Semi-Volatile Organic Cmpds						
Acenaphthene	Not Detected	5	μg/L	04/23/22	BD	
Acenaphthylene	Not Detected	5	μg/L	04/23/22	BD	
Aniline	Not Detected	4	μg/L	04/23/22	BD	
Anthracene	Not Detected	5	μg/L	04/23/22	BD	
Azobenzene	Not Detected	2	μg/L	04/23/22	BD	
Benzidine	Not Detected	2	μg/L	04/23/22	BD	
Benzo(a)anthracene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(b)fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(k)fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(g,h,i)perylene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(a)pyrene	Not Detected	1	μg/L	04/23/22	BD	
Benzyl alcohol	Not Detected	50	μg/L	04/23/22	BD	
Bis(2-chloroethyl)ether	Not Detected	1	μg/L	04/23/22	BD	
Bis(2-chloroisopropyl)ether	Not Detected	5	μg/L	04/23/22	BD	
Bis(2-chloroethoxy)methane	Not Detected	5	μg/L	04/23/22	BD	
Bis(2-ethylhexyl)phthalate	Not Detected	5	μg/L	04/23/22	BD	
4-Bromophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD	
Butyl benzyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
Carbazole	Not Detected	10	μg/L	04/23/22	BD	
4-Chloroaniline	Not Detected	10	μg/L	04/23/22	BD	
4-Chloro-3-methylphenol	Not Detected	5	μg/L	04/23/22	BD	
2-Chloronaphthalene (beta)	Not Detected	5	μg/L	04/23/22	BD	
2-Chlorophenol	Not Detected	10	μg/L	04/23/22	BD	
4-Chlorophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD	
Chrysene	Not Detected	1	μg/L	04/23/22	BD	
Di-n-butylphthalate	Not Detected	5	μg/L	04/23/22	BD	
Di-n-octyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
Dibenzo(a,h)anthracene	Not Detected	2	μg/L	04/23/22	BD	
Dibenzofuran	Not Detected	4	μg/L	04/23/22	BD	
3,3'-Dichlorobenzidine	Not Detected	2	μg/L	04/23/22	BD	
2,4-Dichlorophenol	Not Detected	10	μg/L	04/23/22	BD	
Diethylphthalate	Not Detected	5	μg/L	04/23/22	BD	
Dimethyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
2,4-Dimethylphenol	Not Detected	5	μg/L	04/23/22	BD	
2,4-Dinitrophenol	Not Detected	25	μg/L	04/23/22	BD	
2,4-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD	
2,6-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD	
continued						

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

M Matrix interference observed F Matrix Spike four times rule applied C See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 5 of 83

Sample Description:	GP/TMW-1, ()945, 4/19/22				
Laboratory ID:	12245-1	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
SVOC's, Cont'd						
Fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Fluorene	Not Detected	5	μg/L	04/23/22	BD	
Hexachlorobenzene	Not Detected	1	μg/L	04/23/22	BD	
Hexachlorocyclopentadiene	Not Detected	5	μg/L	04/23/22	BD	
Hexachloroethane	Not Detected	5	μg/L	04/23/22	BD	
Indeno(1,2,3-cd)pyrene	Not Detected	2	μg/L	04/23/22	BD	
Isophorone	Not Detected	5	μg/L	04/23/22	BD	
2-Methyl-4,6-Dinitrophenol	Not Detected	20	μg/L	04/23/22	BD	
2-Methylnaphthalene	Not Detected	5	μg/L	04/23/22	BD	
2-Methylphenol	Not Detected	10	μg/L	04/23/22	BD	
4-Methylphenol	Not Detected	10	μg/L	04/23/22	BD	
Methylphenols (total)	Not Detected	30	μg/L	04/23/22	BD	
Naphthalene	Not Detected	5	μg/L	04/23/22	BD	
2-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
3-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
4-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
Nitrobenzene	Not Detected	3	μg/L	04/23/22	BD	
2-Nitrophenol	Not Detected	5	μg/L	04/23/22	BD	
4-Nitrophenol	Not Detected	25	μg/L	04/23/22	BD	
N-Nitrosodi-n-propylamine	Not Detected	5	μg/L	04/23/22	BD	
N-Nitrosodiphenylamine	Not Detected	5	μg/L	04/23/22	BD	
Pentachlorophenol	Not Detected	1	μg/L	04/23/22	BD	
Phenanthrene	Not Detected	2	μg/L	04/23/22	BD	
Phenol	Not Detected	5	μg/L	04/23/22	BD	
Pyrene	Not Detected	5	μg/L	04/23/22	BD	
Pyridine	Not Detected	20	μg/L	04/23/22	BD	
2,4,5-Trichlorophenol	Not Detected	5	μg/L	04/23/22	BD	
2,4,6-Trichlorophenol	Not Detected	4	μg/L	04/23/22	BD	
Surrogate Standards						
2-Fluorophenol	30.7%	-	% Recovery	04/23/22	BD	
Phenol-d5	26.6%	-	% Recovery	04/23/22	BD	
Nitrobenzene-d5	41.0%	-	% Recovery	04/23/22	BD	
2-Fluorobiphenyl	51.9%	-	% Recovery	04/23/22	BD	
2,4,6-Tribromophenol	43.6%	-	% Recovery	04/23/22	BD	
Terphenyl-d14	44.0%	-	% Recovery	04/23/22	BD	
continued						

QC spike recovery outside of acceptance limits RPD outside of acceptance limits

Matrix Spike four times rule applied See Case Narrative

Internal Standard results outside of acceptance limits

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix interference observed

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 6 of 83

Sample Description:	GP/TMW-1, 0	945, 4/19/22				
Laboratory ID:	12245-1	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Michigan Metals						
Arsenic	Not Detected	5	μg/L	04/26/22	DS	
Barium	440	100	μg/L	04/26/22	DS	
Cadmium	Not Detected	1	μg/L	04/26/22	DS	
Chromium	Not Detected	5	μg/L	04/26/22	DS	
Copper	Not Detected	4	μg/L	04/26/22	DS	
Lead	Not Detected	3	μg/L	04/26/22	DS	
Mercury	Not Detected	0.2	μg/L	04/27/22	DS	
Selenium	Not Detected	5	μg/L	04/26/22	DS	
Silver	Not Detected	0.2	μg/L	04/26/22	DS	
Zinc	Not Detected	50	μg/L	04/26/22	DS	
Total Petroleum Hydrocarbons						
DRO (C ₁₀ -C ₂₈)	146	100	μg/L	04/26/22	DS	
ORO (C ₂₈ -C ₃₄)	Not Detected	200	μg/L	04/29/22	DS	
Analysis Information						
SVOC Extraction	Completed	-	-	04/22/22	LB	
TPH-DRO/ ORO Extraction	Completed	-	-	04/23/22	LB	
Mercury Digestion	Completed	-	-	04/26/22	LB	
Metals Digestion	Completed	-	-	04/26/22	LB	_

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 7 of 83

Sample Description:	GP/TMW-2, 1	1040, 4/19/22				
Laboratory ID:	12245-2	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	50	μg/L	04/26/22	BD	
Benzene	Not Detected	1	μg/L	04/26/22	BD	
Bromobenzene	Not Detected	1	μg/L	04/26/22	BD	
Bromochloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromodichloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromoform	Not Detected	1	μg/L	04/26/22	BD	
Bromomethane	Not Detected	5	μg/L	04/26/22	BD	
2-Butanone (MEK)	Not Detected	25	μg/L	04/26/22	BD	
n-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
sec-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
tert-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Carbon disulfide	Not Detected	5	μg/L	04/26/22	BD	
Carbon tetrachloride	Not Detected	1	μg/L	04/26/22	BD	
Chlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Chloroethane	Not Detected	5	μg/L	04/26/22	BD	
Chloroform	Not Detected	1	μg/L	04/26/22	BD	
Chloromethane	Not Detected	5	μg/L	04/26/22	BD	
2-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
4-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
Dibromochloromethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	0.2	μg/L	04/26/22	BD	
Dibromomethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,4-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Dichlorodifluoromethane	Not Detected	5	μg/L	04/26/22	BD	
1,1-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
cis-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
trans-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
2,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
continued						

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 8 of 83

Sample Description:	GP/TMW-2, 1	1040, 4/19/22				
Laboratory ID:	12245-2	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	0.2	μg/L	04/26/22	BD	
Hexachlorobutadiene	Not Detected	0.2	μg/L	04/26/22	BD	
2-Hexanone	Not Detected	50	μg/L	04/26/22	BD	
Isopropyl benzene	Not Detected	5	μg/L	04/26/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	50	μg/L	04/26/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	5	μg/L	04/26/22	BD	
Methylene chloride	Not Detected	5	μg/L	04/26/22	BD	
2-Methylnapthalene	Not Detected	5	μg/L	04/26/22	BD	
Naphthalene	Not Detected	5	μg/L	04/26/22	BD	
n-Propyl benzene	Not Detected	1	μg/L	04/26/22	BD	
Styrene	Not Detected	1	μg/L	04/26/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
Tetrachloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Tetrahydrofuran	Not Detected	90	μg/L	04/26/22	BD	
Toluene	Not Detected	1	μg/L	04/26/22	BD	
1,2,3-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,2,4-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,1,1-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
Trichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Trichlorofluoromethane	Not Detected	1	μg/L	04/26/22	BD	
1,2,3-Trichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,2,4-Trimethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
1,3,5-Trimethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Vinyl Acetate	Not Detected	100	μg/L	04/26/22	BD	
Vinyl chloride	Not Detected	1	μg/L	04/26/22	BD	
Xylene (Total)	Not Detected	3	μg/L	04/26/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	96.7%	-	% Recovery	04/26/22	BD	
Toluene-d8	103%	-	% Recovery	04/26/22	BD	
4-Bromofluorobenzene	98.8%	-	% Recovery	04/26/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 9 of 83

Sample Description:	GP/TMW-2, 1	1040, 4/19/22				
Laboratory ID:	12245-2	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Semi-Volatile Organic Cmpds						
Acenaphthene	Not Detected	5	μg/L	04/23/22	BD	
Acenaphthylene	Not Detected	5	μg/L	04/23/22	BD	
Aniline	Not Detected	4	μg/L	04/23/22	BD	
Anthracene	Not Detected	5	μg/L	04/23/22	BD	
Azobenzene	Not Detected	2	μg/L	04/23/22	BD	
Benzidine	Not Detected	2	μg/L	04/23/22	BD	
Benzo(a)anthracene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(b)fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(k)fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(g,h,i)perylene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(a)pyrene	Not Detected	1	μg/L	04/23/22	BD	
Benzyl alcohol	Not Detected	50	μg/L	04/23/22	BD	
Bis(2-chloroethyl)ether	Not Detected	1	μg/L	04/23/22	BD	
Bis(2-chloroisopropyl)ether	Not Detected	5	μg/L	04/23/22	BD	
Bis(2-chloroethoxy)methane	Not Detected	5	μg/L	04/23/22	BD	
Bis(2-ethylhexyl)phthalate	Not Detected	5	μg/L	04/23/22	BD	
4-Bromophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD	
Butyl benzyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
Carbazole	Not Detected	10	μg/L	04/23/22	BD	
4-Chloroaniline	Not Detected	10	μg/L	04/23/22	BD	
4-Chloro-3-methylphenol	Not Detected	5	μg/L	04/23/22	BD	
2-Chloronaphthalene (beta)	Not Detected	5	μg/L	04/23/22	BD	
2-Chlorophenol	Not Detected	10	μg/L	04/23/22	BD	
4-Chlorophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD	
Chrysene	Not Detected	1	μg/L	04/23/22	BD	
Di-n-butylphthalate	Not Detected	5	μg/L	04/23/22	BD	
Di-n-octyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
Dibenzo(a,h)anthracene	Not Detected	2	μg/L	04/23/22	BD	
Dibenzofuran	Not Detected	4	μg/L	04/23/22	BD	
3,3'-Dichlorobenzidine	Not Detected	2	μg/L	04/23/22	BD	
2,4-Dichlorophenol	Not Detected	10	μg/L	04/23/22	BD	
Diethylphthalate	Not Detected	5	μg/L	04/23/22	BD	
Dimethyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
2,4-Dimethylphenol	Not Detected	5	μg/L	04/23/22	BD	
2,4-Dinitrophenol	Not Detected	25	μg/L	04/23/22	BD	
2,4-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD	
2,6-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD	
continued						

Internal Standard results outside of acceptance limits

E D J

Reporting limit is elevated Result is from a dilution Result should be considered estimated

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 10 of 83

Sample Description:	GP/TMW-2, 1	040, 4/19/22				
Laboratory ID:	12245-2	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
SVOC's, Cont'd						
Fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Fluorene	Not Detected	5	μg/L	04/23/22	BD	
Hexachlorobenzene	Not Detected	1	μg/L	04/23/22	BD	
Hexachlorocyclopentadiene	Not Detected	5	μg/L	04/23/22	BD	
Hexachloroethane	Not Detected	5	μg/L	04/23/22	BD	
Indeno(1,2,3-cd)pyrene	Not Detected	2	μg/L	04/23/22	BD	
Isophorone	Not Detected	5	μg/L	04/23/22	BD	
2-Methyl-4,6-Dinitrophenol	Not Detected	20	μg/L	04/23/22	BD	
2-Methylnaphthalene	Not Detected	5	μg/L	04/23/22	BD	
2-Methylphenol	Not Detected	10	μg/L	04/23/22	BD	
4-Methylphenol	Not Detected	10	μg/L	04/23/22	BD	
Methylphenols (total)	Not Detected	30	μg/L	04/23/22	BD	
Naphthalene	Not Detected	5	μg/L	04/23/22	BD	
2-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
3-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
4-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
Nitrobenzene	Not Detected	3	μg/L	04/23/22	BD	
2-Nitrophenol	Not Detected	5	μg/L	04/23/22	BD	
4-Nitrophenol	Not Detected	25	μg/L	04/23/22	BD	
N-Nitrosodi-n-propylamine	Not Detected	5	μg/L	04/23/22	BD	
N-Nitrosodiphenylamine	Not Detected	5	μg/L	04/23/22	BD	
Pentachlorophenol	Not Detected	1	μg/L	04/23/22	BD	
Phenanthrene	Not Detected	2	μg/L	04/23/22	BD	
Phenol	Not Detected	5	μg/L	04/23/22	BD	
Pyrene	Not Detected	5	μg/L	04/23/22	BD	
Pyridine	Not Detected	20	μg/L	04/23/22	BD	
2,4,5-Trichlorophenol	Not Detected	5	μg/L	04/23/22	BD	
2,4,6-Trichlorophenol	Not Detected	4	μg/L	04/23/22	BD	
Surrogate Standards						
2-Fluorophenol	30.0%	-	% Recovery	04/23/22	BD	
Phenol-d5	25.5%	-	% Recovery	04/23/22	BD	
Nitrobenzene-d5	43.3%	-	% Recovery	04/23/22	BD	
2-Fluorobiphenyl	50.0%	-	% Recovery	04/23/22	BD	
2,4,6-Tribromophenol	42.2%	-	% Recovery	04/23/22	BD	
Terphenyl-d14	42.7%	-	% Recovery	04/23/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 11 of 83

Sample Description:	GP/TMW-2, 1	GP/TMW-2, 1040, 4/19/22							
Laboratory ID:	12245-2	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers			
Total Petroleum Hydrocarbons									
GRO (C ₆ -C ₁₀)	Not Detected	100	μg/L	04/26/22	BD				
DRO (C ₁₀ -C ₂₈)	157	100	μg/L	04/26/22	DS				
ORO (C ₂₈ -C ₃₄)	Not Detected	200	μg/L	04/29/22	DS				
Analysis Information									
SVOC Extraction	Completed	-	-	04/22/22	LB				
TPH-DRO/ ORO Extraction	Completed	-	-	04/23/22	LB				

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 12 of 83

Sample Description:	GP/TMW-3,	1135, 4/19/22				
Laboratory ID:	12245-3	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	50	μg/L	04/27/22	BD	
Benzene	6	1	μg/L	04/27/22	BD	
Bromobenzene	Not Detected	1	μg/L	04/27/22	BD	
Bromochloromethane	Not Detected	1	μg/L	04/27/22	BD	
Bromodichloromethane	Not Detected	1	μg/L	04/27/22	BD	
Bromoform	Not Detected	1	μg/L	04/27/22	BD	
Bromomethane	Not Detected	5	μg/L	04/27/22	BD	
2-Butanone (MEK)	Not Detected	25	μg/L	04/27/22	BD	
n-Butylbenzene	13	1	μg/L	04/27/22	BD	
sec-Butylbenzene	7	1	μg/L	04/27/22	BD	
tert-Butylbenzene	Not Detected	1	μg/L	04/27/22	BD	
Carbon disulfide	Not Detected	5	μg/L	04/27/22	BD	
Carbon tetrachloride	Not Detected	1	μg/L	04/27/22	BD	
Chlorobenzene	Not Detected	1	μg/L	04/27/22	BD	
Chloroethane	Not Detected	5	μg/L	04/27/22	BD	
Chloroform	Not Detected	1	μg/L	04/27/22	BD	
Chloromethane	Not Detected	5	μg/L	04/27/22	BD	
2-Chlorotoluene	Not Detected	5	μg/L	04/27/22	BD	
4-Chlorotoluene	Not Detected	5	μg/L	04/27/22	BD	
Dibromochloromethane	Not Detected	5	μg/L	04/27/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	0.2	μg/L	04/27/22	BD	
Dibromomethane	Not Detected	5	μg/L	04/27/22	BD	
1,2-Dichlorobenzene	Not Detected	1	μg/L	04/27/22	BD	
1,3-Dichlorobenzene	Not Detected	1	μg/L	04/27/22	BD	
1,4-Dichlorobenzene	Not Detected	1	μg/L	04/27/22	BD	
Dichlorodifluoromethane	Not Detected	5	μg/L	04/27/22	BD	
1,1-Dichloroethane	Not Detected	1	μg/L	04/27/22	BD	
1,2-Dichloroethane	Not Detected	1	μg/L	04/27/22	BD	
1,1-Dichloroethylene	Not Detected	1	μg/L	04/27/22	BD	
cis-1,2-Dichloroethylene	Not Detected	1	μg/L	04/27/22	BD	
trans-1,2-Dichloroethylene	Not Detected	1	μg/L	04/27/22	BD	
1,2-Dichloropropane	Not Detected	1	μg/L	04/27/22	BD	
1,3-Dichloropropane	Not Detected	1	μg/L	04/27/22	BD	
2,2-Dichloropropane	Not Detected	1	μg/L	04/27/22	BD	
1,1-Dichloropropene	Not Detected	1	μg/L	04/27/22	BD	
1,3-Dichloropropene	Not Detected	1	μg/L	04/27/22	BD	
continued			-			

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 13 of 83

Sample Description:	GP/TMW-3,	1135, 4/19/22				
Laboratory ID:	12245-3	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	6	1	μg/L	04/27/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	0.2	μg/L	04/27/22	BD	
Hexachlorobutadiene	Not Detected	0.2	μg/L	04/27/22	BD	
2-Hexanone	Not Detected	50	μg/L	04/27/22	BD	
Isopropyl benzene	19	5	μg/L	04/27/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	50	μg/L	04/27/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	5	μ g/L	04/27/22	BD	
Methylene chloride	Not Detected	5	μg/L	04/27/22	BD	
2-Methylnapthalene	18	5	μg/L	04/27/22	BD	
Naphthalene	25	5	μg/L	04/27/22	BD	
n-Propyl benzene	52	1	μg/L	04/27/22	BD	
Styrene	Not Detected	1	μg/L	04/27/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	1	μg/L	04/27/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	1	μg/L	04/27/22	BD	
Tetrachloroethylene	Not Detected	1	μg/L	04/27/22	BD	
Tetrahydrofuran	Not Detected	90	μg/L	04/27/22	BD	
Toluene	1	1	μ g/L	04/27/22	BD	
1,2,3-Trichlorobenzene	Not Detected	5	μg/L	04/27/22	BD	
1,2,4-Trichlorobenzene	Not Detected	5	μg/L	04/27/22	BD	
1,1,1-Trichloroethane	Not Detected	1	μg/L	04/27/22	BD	
1,1,2-Trichloroethane	Not Detected	1	μg/L	04/27/22	BD	
Trichloroethylene	Not Detected	1	μg/L	04/27/22	BD	
Trichlorofluoromethane	Not Detected	1	μg/L	04/27/22	BD	
1,2,3-Trichloropropane	Not Detected	1	μg/L	04/27/22	BD	
1,2,4-Trimethylbenzene	2	1	μg/L	04/27/22	BD	
1,3,5-Trimethylbenzene	Not Detected	1	μg/L	04/27/22	BD	
Vinyl Acetate	Not Detected	100	μg/L	04/27/22	BD	
Vinyl chloride	Not Detected	1	μg/L	04/27/22	BD	
Xylene (Total)	Not Detected	3	μg/L	04/27/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	87.6%	-	% Recovery	04/27/22	BD	
Toluene-d8	92.5%	-	% Recovery	04/27/22	BD	
4-Bromofluorobenzene	100%	-	% Recovery	04/27/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 14 of 83

Sample Description:	GP/TMW-3, 1135, 4/19/22						
Laboratory ID:	12245-3	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
Semi-Volatile Organic Cmpds							
Acenaphthene	Not Detected	5	μg/L	04/23/22	BD		
Acenaphthylene	Not Detected	5	μg/L	04/23/22	BD		
Aniline	Not Detected	4	μg/L	04/23/22	BD		
Anthracene	Not Detected	5	μg/L	04/23/22	BD		
Azobenzene	Not Detected	2	μg/L	04/23/22	BD		
Benzidine	Not Detected	2	μg/L	04/23/22	BD		
Benzo(a)anthracene	Not Detected	1	μg/L	04/23/22	BD		
Benzo(b)fluoranthene	Not Detected	1	μg/L	04/23/22	BD		
Benzo(k)fluoranthene	Not Detected	1	μg/L	04/23/22	BD		
Benzo(g,h,i)perylene	Not Detected	1	μg/L	04/23/22	BD		
Benzo(a)pyrene	Not Detected	1	μg/L	04/23/22	BD		
Benzyl alcohol	Not Detected	50	μg/L	04/23/22	BD		
Bis(2-chloroethyl)ether	Not Detected	1	μg/L	04/23/22	BD		
Bis(2-chloroisopropyl)ether	Not Detected	5	μg/L	04/23/22	BD		
Bis(2-chloroethoxy)methane	Not Detected	5	μg/L	04/23/22	BD		
Bis(2-ethylhexyl)phthalate	Not Detected	5	μg/L	04/23/22	BD		
4-Bromophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD		
Butyl benzyl phthalate	Not Detected	5	μg/L	04/23/22	BD		
Carbazole	Not Detected	10	μg/L	04/23/22	BD		
4-Chloroaniline	Not Detected	10	μg/L	04/23/22	BD		
4-Chloro-3-methylphenol	Not Detected	5	μg/L	04/23/22	BD		
2-Chloronaphthalene (beta)	Not Detected	5	μg/L	04/23/22	BD		
2-Chlorophenol	Not Detected	10	μg/L	04/23/22	BD		
4-Chlorophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD		
Chrysene	Not Detected	1	μg/L	04/23/22	BD		
Di-n-butylphthalate	Not Detected	5	μg/L	04/23/22	BD		
Di-n-octyl phthalate	Not Detected	5	μg/L	04/23/22	BD		
Dibenzo(a,h)anthracene	Not Detected	2	μg/L	04/23/22	BD		
Dibenzofuran	Not Detected	4	μg/L	04/23/22	BD		
3,3'-Dichlorobenzidine	Not Detected	2	μg/L	04/23/22	BD		
2,4-Dichlorophenol	Not Detected	10	μg/L	04/23/22	BD		
Diethylphthalate	Not Detected	5	μg/L	04/23/22	BD		
Dimethyl phthalate	Not Detected	5	μg/L	04/23/22	BD		
2,4-Dimethylphenol	Not Detected	5	μg/L	04/23/22	BD		
2,4-Dinitrophenol	Not Detected	25	μg/L	04/23/22	BD		
2,4-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD		
2,6-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD		
continued							

E D J Reporting limit is elevated Result is from a dilution Result should be considered estimated

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 15 of 83

Sample Description:	GP/TMW-3, 1	1135, 4/19/22				
Laboratory ID:	12245-3	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
SVOC's, Cont'd						
Fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Fluorene	Not Detected	5	μg/L	04/23/22	BD	
Hexachlorobenzene	Not Detected	1	μg/L	04/23/22	BD	
Hexachlorocyclopentadiene	Not Detected	5	μg/L	04/23/22	BD	
Hexachloroethane	Not Detected	5	μg/L	04/23/22	BD	
Indeno(1,2,3-cd)pyrene	Not Detected	2	μg/L	04/23/22	BD	
Isophorone	Not Detected	5	μg/L	04/23/22	BD	
2-Methyl-4,6-Dinitrophenol	Not Detected	20	μg/L	04/23/22	BD	
2-Methylnaphthalene	9	5	μg/L	04/23/22	BD	
2-Methylphenol	Not Detected	10	μg/L	04/23/22	BD	
4-Methylphenol	Not Detected	10	μg/L	04/23/22	BD	
Methylphenols (total)	Not Detected	30	μg/L	04/23/22	BD	
Naphthalene	9	5	μg/L	04/23/22	BD	
2-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
3-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
4-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
Nitrobenzene	Not Detected	3	μg/L	04/23/22	BD	
2-Nitrophenol	Not Detected	5	μg/L	04/23/22	BD	
4-Nitrophenol	Not Detected	25	μg/L	04/23/22	BD	
N-Nitrosodi-n-propylamine	Not Detected	5	μg/L	04/23/22	BD	
N-Nitrosodiphenylamine	Not Detected	5	μg/L	04/23/22	BD	
Pentachlorophenol	Not Detected	1	μg/L	04/23/22	BD	
Phenanthrene	Not Detected	2	μg/L	04/23/22	BD	
Phenol	Not Detected	5	μg/L	04/23/22	BD	
Pyrene	Not Detected	5	μg/L	04/23/22	BD	
Pyridine	Not Detected	20	μg/L	04/23/22	BD	
2,4,5-Trichlorophenol	Not Detected	5	μg/L	04/23/22	BD	
2,4,6-Trichlorophenol	Not Detected	4	μg/L	04/23/22	BD	
Surrogate Standards						
2-Fluorophenol	27.7%	-	% Recovery	04/23/22	BD	
Phenol-d5	28.4%	-	% Recovery	04/23/22	BD	
Nitrobenzene-d5	41.5%	-	% Recovery	04/23/22	BD	
2-Fluorobiphenyl	51.3%	-	% Recovery	04/23/22	BD	
2,4,6-Tribromophenol	39.9%	-	% Recovery	04/23/22	BD	
Terphenyl-d14	43.3%	-	% Recovery	04/23/22	BD	
continued			-			

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 16 of 83

Sample Description:	GP/TMW-3, 1	GP/TMW-3, 1135, 4/19/22							
Laboratory ID:	12245-3	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers			
Total Petroleum Hydrocarbons									
GRO (C ₆ -C ₁₀)	2,810	100	μg/L	04/26/22	BD				
DRO (C ₁₀ -C ₂₈)	670	100	μg/L	04/26/22	DS				
ORO (C ₂₈ -C ₃₄)	Not Detected	200	μg/L	04/29/22	DS				
Analysis Information									
SVOC Extraction	Completed	-	-	04/22/22	LB				
TPH-DRO/ ORO Extraction	Completed	-	-	04/23/22	LB				

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 17 of 83

Sample Description:	GP/TMW-4, 1	1243, 4/19/22				
Laboratory ID:	12245-4	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	50	μg/L	04/26/22	BD	
Benzene	Not Detected	1	μg/L	04/26/22	BD	
Bromobenzene	Not Detected	1	μg/L	04/26/22	BD	
Bromochloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromodichloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromoform	Not Detected	1	μg/L	04/26/22	BD	
Bromomethane	Not Detected	5	μg/L	04/26/22	BD	
2-Butanone (MEK)	Not Detected	25	μg/L	04/26/22	BD	
n-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
sec-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
tert-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Carbon disulfide	Not Detected	5	μg/L	04/26/22	BD	
Carbon tetrachloride	Not Detected	1	μg/L	04/26/22	BD	
Chlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Chloroethane	Not Detected	5	μg/L	04/26/22	BD	
Chloroform	Not Detected	1	μg/L	04/26/22	BD	
Chloromethane	Not Detected	5	μg/L	04/26/22	BD	
2-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
4-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
Dibromochloromethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	0.2	μg/L	04/26/22	BD	
Dibromomethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,4-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Dichlorodifluoromethane	Not Detected	5	μg/L	04/26/22	BD	
1,1-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
cis-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
trans-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
2,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
continued						

- Internal Standard results outside of acceptance limits
- QC spike recovery outside of acceptance limits RPD outside of acceptance limits

- Reporting limit is elevated Result is from a dilution Result should be considered estimated D J
- Matrix interference observed
- Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 18 of 83

Sample Description:	GP/TMW-4,	1243, 4/19/22				
Laboratory ID:	12245-4	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	0.2	μg/L	04/26/22	BD	
Hexachlorobutadiene	Not Detected	0.2	μg/L	04/26/22	BD	
2-Hexanone	Not Detected	50	μg/L	04/26/22	BD	
Isopropyl benzene	Not Detected	5	μg/L	04/26/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	50	μg/L	04/26/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	5	μg/L	04/26/22	BD	
Methylene chloride	Not Detected	5	μg/L	04/26/22	BD	
2-Methylnapthalene	Not Detected	5	μg/L	04/26/22	BD	
Naphthalene	Not Detected	5	μg/L	04/26/22	BD	
n-Propyl benzene	Not Detected	1	μg/L	04/26/22	BD	
Styrene	Not Detected	1	μg/L	04/26/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
Tetrachloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Tetrahydrofuran	Not Detected	90	μg/L	04/26/22	BD	
Toluene	Not Detected	1	μ g/L	04/26/22	BD	
1,2,3-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,2,4-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,1,1-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
Trichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Trichlorofluoromethane	Not Detected	1	μg/L	04/26/22	BD	
1,2,3-Trichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,2,4-Trimethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
1,3,5-Trimethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Vinyl Acetate	Not Detected	100	μg/L	04/26/22	BD	
Vinyl chloride	Not Detected	1	μg/L	04/26/22	BD	
Xylene (Total)	Not Detected	3	μg/L	04/26/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	94.5%	-	% Recovery	04/26/22	BD	
Toluene-d8	103%	-	% Recovery	04/26/22	BD	
4-Bromofluorobenzene	103%	-	% Recovery	04/26/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 19 of 83

Sample Description:	GP/TMW-4,	1243, 4/19/22				
Laboratory ID:	12245-4	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Semi-Volatile Organic Cmpds						
Acenaphthene	Not Detected	5	μg/L	04/23/22	BD	
Acenaphthylene	Not Detected	5	μg/L	04/23/22	BD	
Aniline	Not Detected	4	μg/L	04/23/22	BD	
Anthracene	Not Detected	5	μg/L	04/23/22	BD	
Azobenzene	Not Detected	2	μg/L	04/23/22	BD	
Benzidine	Not Detected	2	μg/L	04/23/22	BD	
Benzo(a)anthracene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(b)fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(k)fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(g,h,i)perylene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(a)pyrene	Not Detected	1	μg/L	04/23/22	BD	
Benzyl alcohol	Not Detected	50	μg/L	04/23/22	BD	
Bis(2-chloroethyl)ether	Not Detected	1	μg/L	04/23/22	BD	
Bis(2-chloroisopropyl)ether	Not Detected	5	μg/L	04/23/22	BD	
Bis(2-chloroethoxy)methane	Not Detected	5	μg/L	04/23/22	BD	
Bis(2-ethylhexyl)phthalate	Not Detected	5	μg/L	04/23/22	BD	
4-Bromophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD	
Butyl benzyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
Carbazole	Not Detected	10	μg/L	04/23/22	BD	
4-Chloroaniline	Not Detected	10	μg/L	04/23/22	BD	
4-Chloro-3-methylphenol	Not Detected	5	μg/L	04/23/22	BD	
2-Chloronaphthalene (beta)	Not Detected	5	μg/L	04/23/22	BD	
2-Chlorophenol	Not Detected	10	μg/L	04/23/22	BD	
4-Chlorophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD	
Chrysene	Not Detected	1	μg/L	04/23/22	BD	
Di-n-butylphthalate	Not Detected	5	μg/L	04/23/22	BD	
Di-n-octyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
Dibenzo(a,h)anthracene	Not Detected	2	μg/L	04/23/22	BD	
Dibenzofuran	Not Detected	4	μg/L	04/23/22	BD	
3,3'-Dichlorobenzidine	Not Detected	2	μg/L	04/23/22	BD	
2,4-Dichlorophenol	Not Detected	10	μg/L	04/23/22	BD	
Diethylphthalate	Not Detected	5	μg/L	04/23/22	BD	
Dimethyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
2,4-Dimethylphenol	Not Detected	5	μg/L	04/23/22	BD	
2,4-Dinitrophenol	Not Detected	25	μg/L	04/23/22	BD	
2,4-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD	
2,6-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD	
continued						

- Internal Standard results outside of acceptance limits
- QC spike recovery outside of acceptance limits RPD outside of acceptance limits

- Reporting limit is elevated Result is from a dilution Result should be considered estimated D J
- M Matrix interference observed
 F Matrix Spike four times rule applied
 C See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 20 of 83

Sample Description:	GP/TMW-4,	1243, 4/19/22				
Laboratory ID:	12245-4	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
SVOC's, Cont'd						
Fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Fluorene	Not Detected	5	μg/L	04/23/22	BD	
Hexachlorobenzene	Not Detected	1	μg/L	04/23/22	BD	
Hexachlorocyclopentadiene	Not Detected	5	μg/L	04/23/22	BD	
Hexachloroethane	Not Detected	5	μg/L	04/23/22	BD	
Indeno(1,2,3-cd)pyrene	Not Detected	2	μg/L	04/23/22	BD	
Isophorone	Not Detected	5	μg/L	04/23/22	BD	
2-Methyl-4,6-Dinitrophenol	Not Detected	20	μg/L	04/23/22	BD	
2-Methylnaphthalene	Not Detected	5	μg/L	04/23/22	BD	
2-Methylphenol	Not Detected	10	μg/L	04/23/22	BD	
4-Methylphenol	Not Detected	10	μg/L	04/23/22	BD	
Methylphenols (total)	Not Detected	30	μg/L	04/23/22	BD	
Naphthalene	Not Detected	5	μg/L	04/23/22	BD	
2-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
3-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
4-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
Nitrobenzene	Not Detected	3	μg/L	04/23/22	BD	
2-Nitrophenol	Not Detected	5	μg/L	04/23/22	BD	
4-Nitrophenol	Not Detected	25	μg/L	04/23/22	BD	
N-Nitrosodi-n-propylamine	Not Detected	5	μg/L	04/23/22	BD	
N-Nitrosodiphenylamine	Not Detected	5	μg/L	04/23/22	BD	
Pentachlorophenol	Not Detected	1	μg/L	04/23/22	BD	
Phenanthrene	Not Detected	2	μg/L	04/23/22	BD	
Phenol	Not Detected	5	μg/L	04/23/22	BD	
Pyrene	Not Detected	5	μg/L	04/23/22	BD	
Pyridine	Not Detected	20	μg/L	04/23/22	BD	
2,4,5-Trichlorophenol	Not Detected	5	μg/L	04/23/22	BD	
2,4,6-Trichlorophenol	Not Detected	4	μg/L	04/23/22	BD	
Surrogate Standards						
2-Fluorophenol	33.2%	-	% Recovery	04/23/22	BD	
Phenol-d5	31.9%	-	% Recovery	04/23/22	BD	
Nitrobenzene-d5	41.9%	-	% Recovery	04/23/22	BD	
2-Fluorobiphenyl	52.4%	-	% Recovery	04/23/22	BD	
2,4,6-Tribromophenol	47.6%	-	% Recovery	04/23/22	BD	
Terphenyl-d14	43.0%	-	% Recovery	04/23/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 21 of 83

Sample Description:	GP/TMW-4, 1	GP/TMW-4, 1243, 4/19/22						
Laboratory ID:	12245-4	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers		
Total Petroleum Hydrocarbons								
GRO (C ₆ -C ₁₀)	Not Detected	100	μg/L	04/26/22	BD			
DRO (C ₁₀ -C ₂₈)	Not Detected	100	μg/L	04/26/22	DS			
ORO (C ₂₈ -C ₃₄)	Not Detected	200	μg/L	04/29/22	DS			
Analysis Information								
SVOC Extraction	Completed	-	-	04/22/22	LB			
TPH-DRO/ ORO Extraction	Completed	-	-	04/23/22	LB			

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 22 of 83

Sample Description:	GP/TMW-5, 1	1350, 4/19/22				
Laboratory ID:	12245-5	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	50	μg/L	04/26/22	BD	
Benzene	Not Detected	1	μg/L	04/26/22	BD	
Bromobenzene	Not Detected	1	μg/L	04/26/22	BD	
Bromochloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromodichloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromoform	Not Detected	1	μg/L	04/26/22	BD	
Bromomethane	Not Detected	5	μg/L	04/26/22	BD	
2-Butanone (MEK)	Not Detected	25	μg/L	04/26/22	BD	
n-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
sec-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
tert-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Carbon disulfide	Not Detected	5	μg/L	04/26/22	BD	
Carbon tetrachloride	Not Detected	1	μg/L	04/26/22	BD	
Chlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Chloroethane	Not Detected	5	μg/L	04/26/22	BD	
Chloroform	Not Detected	1	μg/L	04/26/22	BD	
Chloromethane	Not Detected	5	μg/L	04/26/22	BD	
2-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
4-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
Dibromochloromethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	0.2	μg/L	04/26/22	BD	
Dibromomethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,4-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Dichlorodifluoromethane	Not Detected	5	μg/L	04/26/22	BD	
1,1-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
cis-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
trans-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
2,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
continued						

Internal Standard results outside of acceptance limits

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 23 of 83

Sample Description:	GP/TMW-5, 1	1350, 4/19/22				
Laboratory ID:	12245-5	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	0.2	μg/L	04/26/22	BD	
Hexachlorobutadiene	Not Detected	0.2	μg/L	04/26/22	BD	
2-Hexanone	Not Detected	50	μg/L	04/26/22	BD	
Isopropyl benzene	Not Detected	5	μg/L	04/26/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	50	μg/L	04/26/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	5	μg/L	04/26/22	BD	
Methylene chloride	Not Detected	5	μg/L	04/26/22	BD	
2-Methylnapthalene	Not Detected	5	μg/L	04/26/22	BD	
Naphthalene	Not Detected	5	μg/L	04/26/22	BD	
n-Propyl benzene	Not Detected	1	μg/L	04/26/22	BD	
Styrene	Not Detected	1	μg/L	04/26/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
Tetrachloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Tetrahydrofuran	Not Detected	90	μg/L	04/26/22	BD	
Toluene	Not Detected	1	μg/L	04/26/22	BD	
1,2,3-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,2,4-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,1,1-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
Trichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Trichlorofluoromethane	Not Detected	1	μg/L	04/26/22	BD	
1,2,3-Trichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,2,4-Trimethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
1,3,5-Trimethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Vinyl Acetate	Not Detected	100	μg/L	04/26/22	BD	
Vinyl chloride	Not Detected	1	μg/L	04/26/22	BD	
Xylene (Total)	Not Detected	3	μg/L	04/26/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	88.8%	-	% Recovery	04/26/22	BD	
Toluene-d8	103%	-	% Recovery	04/26/22	BD	
4-Bromofluorobenzene	102%	-	% Recovery	04/26/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 24 of 83

Sample Description:	GP/TMW-5, 1350, 4/19/22					
Laboratory ID:	12245-5	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Semi-Volatile Organic Cmpds						
Acenaphthene	Not Detected	5	μg/L	04/23/22	BD	
Acenaphthylene	Not Detected	5	μg/L	04/23/22	BD	
Aniline	Not Detected	4	μg/L	04/23/22	BD	
Anthracene	Not Detected	5	μg/L	04/23/22	BD	
Azobenzene	Not Detected	2	μg/L	04/23/22	BD	
Benzidine	Not Detected	2	μg/L	04/23/22	BD	
Benzo(a)anthracene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(b)fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(k)fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(g,h,i)perylene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(a)pyrene	Not Detected	1	μg/L	04/23/22	BD	
Benzyl alcohol	Not Detected	50	μg/L	04/23/22	BD	
Bis(2-chloroethyl)ether	Not Detected	1	μg/L	04/23/22	BD	
Bis(2-chloroisopropyl)ether	Not Detected	5	μg/L	04/23/22	BD	
Bis(2-chloroethoxy)methane	Not Detected	5	μg/L	04/23/22	BD	
Bis(2-ethylhexyl)phthalate	Not Detected	5	μg/L	04/23/22	BD	
4-Bromophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD	
Butyl benzyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
Carbazole	Not Detected	10	μg/L	04/23/22	BD	
4-Chloroaniline	Not Detected	10	μg/L	04/23/22	BD	
4-Chloro-3-methylphenol	Not Detected	5	μg/L	04/23/22	BD	
2-Chloronaphthalene (beta)	Not Detected	5	μg/L	04/23/22	BD	
2-Chlorophenol	Not Detected	10	μg/L	04/23/22	BD	
4-Chlorophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD	
Chrysene	Not Detected	1	μg/L	04/23/22	BD	
Di-n-butylphthalate	Not Detected	5	μg/L	04/23/22	BD	
Di-n-octyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
Dibenzo(a,h)anthracene	Not Detected	2	μg/L	04/23/22	BD	
Dibenzofuran	Not Detected	4	μg/L	04/23/22	BD	
3,3'-Dichlorobenzidine	Not Detected	2	μg/L	04/23/22	BD	
2,4-Dichlorophenol	Not Detected	10	μg/L	04/23/22	BD	
Diethylphthalate	Not Detected	5	μg/L	04/23/22	BD	
Dimethyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
2,4-Dimethylphenol	Not Detected	5	μg/L	04/23/22	BD	
2,4-Dinitrophenol	Not Detected	25	μg/L	04/23/22	BD	
2,4-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD	
2,6-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD	
continued						

E D J Reporting limit is elevated Result is from a dilution Result should be considered estimated

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 25 of 83

Sample Description:	GP/TMW-5, 1350, 4/19/22					
Laboratory ID:	12245-5	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
SVOC's, Cont'd						
Fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Fluorene	Not Detected	5	μg/L	04/23/22	BD	
Hexachlorobenzene	Not Detected	1	μg/L	04/23/22	BD	
Hexachlorocyclopentadiene	Not Detected	5	μg/L	04/23/22	BD	
Hexachloroethane	Not Detected	5	μg/L	04/23/22	BD	
Indeno(1,2,3-cd)pyrene	Not Detected	2	μg/L	04/23/22	BD	
Isophorone	Not Detected	5	μg/L	04/23/22	BD	
2-Methyl-4,6-Dinitrophenol	Not Detected	20	μg/L	04/23/22	BD	
2-Methylnaphthalene	Not Detected	5	μg/L	04/23/22	BD	
2-Methylphenol	Not Detected	10	μg/L	04/23/22	BD	
4-Methylphenol	Not Detected	10	μg/L	04/23/22	BD	
Methylphenols (total)	Not Detected	30	μg/L	04/23/22	BD	
Naphthalene	Not Detected	5	μg/L	04/23/22	BD	
2-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
3-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
4-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
Nitrobenzene	Not Detected	3	μg/L	04/23/22	BD	
2-Nitrophenol	Not Detected	5	μg/L	04/23/22	BD	
4-Nitrophenol	Not Detected	25	μg/L	04/23/22	BD	
N-Nitrosodi-n-propylamine	Not Detected	5	μg/L	04/23/22	BD	
N-Nitrosodiphenylamine	Not Detected	5	μg/L	04/23/22	BD	
Pentachlorophenol	Not Detected	1	μg/L	04/23/22	BD	
Phenanthrene	Not Detected	2	μg/L	04/23/22	BD	
Phenol	Not Detected	5	μg/L	04/23/22	BD	
Pyrene	Not Detected	5	μg/L	04/23/22	BD	
Pyridine	Not Detected	20	μg/L	04/23/22	BD	
2,4,5-Trichlorophenol	Not Detected	5	μg/L	04/23/22	BD	
2,4,6-Trichlorophenol	Not Detected	4	μg/L	04/23/22	BD	
Surrogate Standards						
2-Fluorophenol	32.2%	-	% Recovery	04/23/22	BD	
Phenol-d5	28.0%	-	% Recovery	04/23/22	BD	
Nitrobenzene-d5	44.3%	-	% Recovery	04/23/22	BD	
2-Fluorobiphenyl	54.0%	-	% Recovery	04/23/22	BD	
2,4,6-Tribromophenol	43.4%	-	% Recovery	04/23/22	BD	
Terphenyl-d14	43.9%	-	% Recovery	04/23/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix interference observed

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 26 of 83

Sample Description:	GP/TMW-5, 1350, 4/19/22					
Laboratory ID:	12245-5	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Total Petroleum Hydrocarbons						
GRO (C ₆ -C ₁₀)	Not Detected	100	μg/L	04/26/22	BD	
DRO (C ₁₀ -C ₂₈)	188	100	μg/L	04/26/22	DS	
ORO (C ₂₈ -C ₃₄)	284	200	μg/L	04/29/22	DS	
Analysis Information						
SVOC Extraction	Completed	-	-	04/22/22	LB	
TPH-DRO/ ORO Extraction	Completed	-	-	04/23/22	LB	

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 27 of 83

Sample Description:	ST Sewer, 1202, 4/19/22					
Laboratory ID:	12245-6	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	50	μg/L	04/26/22	BD	
Benzene	Not Detected	1	μg/L	04/26/22	BD	
Bromobenzene	Not Detected	1	μg/L	04/26/22	BD	
Bromochloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromodichloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromoform	Not Detected	1	μg/L	04/26/22	BD	
Bromomethane	Not Detected	5	μg/L	04/26/22	BD	
2-Butanone (MEK)	Not Detected	25	μg/L	04/26/22	BD	
n-Butylbenzene	Not Detected	1	μ g/L	04/26/22	BD	
sec-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
tert-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Carbon disulfide	Not Detected	5	μg/L	04/26/22	BD	
Carbon tetrachloride	Not Detected	1	μg/L	04/26/22	BD	
Chlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Chloroethane	Not Detected	5	μg/L	04/26/22	BD	
Chloroform	Not Detected	1	μg/L	04/26/22	BD	
Chloromethane	Not Detected	5	μg/L	04/26/22	BD	
2-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
4-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
Dibromochloromethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	0.2	μg/L	04/26/22	BD	
Dibromomethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,4-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Dichlorodifluoromethane	Not Detected	5	μg/L	04/26/22	BD	
1,1-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
cis-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
trans-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
2,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
continued						

Reporting limit is elevated Result is from a dilution Result should be considered estimated

M Matrix interference observed
F Matrix Spike four times rule ap
C See Case Narrative

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 28 of 83

Sample Description:	ST Sewer, 1202, 4/19/22					
Laboratory ID:	12245-6	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	0.2	μg/L	04/26/22	BD	
Hexachlorobutadiene	Not Detected	0.2	μg/L	04/26/22	BD	
2-Hexanone	Not Detected	50	μg/L	04/26/22	BD	
Isopropyl benzene	Not Detected	5	μg/L	04/26/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	50	μg/L	04/26/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	5	μg/L	04/26/22	BD	
Methylene chloride	Not Detected	5	μg/L	04/26/22	BD	
2-Methylnapthalene	Not Detected	5	μg/L	04/26/22	BD	
Naphthalene	Not Detected	5	μg/L	04/26/22	BD	
n-Propyl benzene	Not Detected	1	μg/L	04/26/22	BD	
Styrene	Not Detected	1	μg/L	04/26/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
Tetrachloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Tetrahydrofuran	Not Detected	90	μg/L	04/26/22	BD	
Toluene	Not Detected	1	μg/L	04/26/22	BD	
1,2,3-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,2,4-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,1,1-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
Trichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Trichlorofluoromethane	Not Detected	1	μg/L	04/26/22	BD	
1,2,3-Trichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,2,4-Trimethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
1,3,5-Trimethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Vinyl Acetate	Not Detected	100	μg/L	04/26/22	BD	
Vinyl chloride	Not Detected	1	μg/L	04/26/22	BD	
Xylene (Total)	Not Detected	3	μg/L	04/26/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	91.4%	-	% Recovery	04/26/22	BD	
Toluene-d8	104%	-	% Recovery	04/26/22	BD	
4-Bromofluorobenzene	104%	-	% Recovery	04/26/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 29 of 83

Sample Description:	ST Sewer, 1202, 4/19/22					
Laboratory ID:	12245-6	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Semi-Volatile Organic Cmpds						
Acenaphthene	Not Detected	5	μg/L	04/23/22	BD	
Acenaphthylene	Not Detected	5	μg/L	04/23/22	BD	
Aniline	Not Detected	4	μg/L	04/23/22	BD	
Anthracene	Not Detected	5	μg/L	04/23/22	BD	
Azobenzene	Not Detected	2	μg/L	04/23/22	BD	
Benzidine	Not Detected	2	μg/L	04/23/22	BD	
Benzo(a)anthracene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(b)fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(k)fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(g,h,i)perylene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(a)pyrene	Not Detected	1	μg/L	04/23/22	BD	
Benzyl alcohol	Not Detected	50	μg/L	04/23/22	BD	
Bis(2-chloroethyl)ether	Not Detected	1	μg/L	04/23/22	BD	
Bis(2-chloroisopropyl)ether	Not Detected	5	μg/L	04/23/22	BD	
Bis(2-chloroethoxy)methane	Not Detected	5	μg/L	04/23/22	BD	
Bis(2-ethylhexyl)phthalate	Not Detected	5	μg/L	04/23/22	BD	
4-Bromophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD	
Butyl benzyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
Carbazole	Not Detected	10	μg/L	04/23/22	BD	
4-Chloroaniline	Not Detected	10	μg/L	04/23/22	BD	
4-Chloro-3-methylphenol	Not Detected	5	μg/L	04/23/22	BD	
2-Chloronaphthalene (beta)	Not Detected	5	μg/L	04/23/22	BD	
2-Chlorophenol	Not Detected	10	μg/L	04/23/22	BD	
4-Chlorophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD	
Chrysene	Not Detected	1	μg/L	04/23/22	BD	
Di-n-butylphthalate	Not Detected	5	μg/L	04/23/22	BD	
Di-n-octyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
Dibenzo(a,h)anthracene	Not Detected	2	μg/L	04/23/22	BD	
Dibenzofuran	Not Detected	4	μg/L	04/23/22	BD	
3,3'-Dichlorobenzidine	Not Detected	2	μg/L	04/23/22	BD	
2,4-Dichlorophenol	Not Detected	10	μg/L	04/23/22	BD	
Diethylphthalate	Not Detected	5	μg/L	04/23/22	BD	
Dimethyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
2,4-Dimethylphenol	Not Detected	5	μg/L	04/23/22	BD	
2,4-Dinitrophenol	Not Detected	25	μg/L	04/23/22	BD	
2,4-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD	
2,6-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD	
continued						

Internal Standard results outside of acceptance limits

E D J Reporting limit is elevated Result is from a dilution Result should be considered estimated

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 30 of 83

Sample Description:	ST Sewer, 1202, 4/19/22					
Laboratory ID:	12245-6	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
SVOC's, Cont'd						
Fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Fluorene	Not Detected	5	μg/L	04/23/22	BD	
Hexachlorobenzene	Not Detected	1	μg/L	04/23/22	BD	
Hexachlorocyclopentadiene	Not Detected	5	μg/L	04/23/22	BD	
Hexachloroethane	Not Detected	5	μg/L	04/23/22	BD	
Indeno(1,2,3-cd)pyrene	Not Detected	2	μg/L	04/23/22	BD	
Isophorone	Not Detected	5	μg/L	04/23/22	BD	
2-Methyl-4,6-Dinitrophenol	Not Detected	20	μg/L	04/23/22	BD	
2-Methylnaphthalene	Not Detected	5	μg/L	04/23/22	BD	
2-Methylphenol	Not Detected	10	μg/L	04/23/22	BD	
4-Methylphenol	Not Detected	10	μg/L	04/23/22	BD	
Methylphenols (total)	Not Detected	30	μg/L	04/23/22	BD	
Naphthalene	Not Detected	5	μg/L	04/23/22	BD	
2-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
3-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
4-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD	
Nitrobenzene	Not Detected	3	μg/L	04/23/22	BD	
2-Nitrophenol	Not Detected	5	μg/L	04/23/22	BD	
4-Nitrophenol	Not Detected	25	μg/L	04/23/22	BD	
N-Nitrosodi-n-propylamine	Not Detected	5	μg/L	04/23/22	BD	
N-Nitrosodiphenylamine	Not Detected	5	μg/L	04/23/22	BD	
Pentachlorophenol	Not Detected	1	μg/L	04/23/22	BD	
Phenanthrene	Not Detected	2	μg/L	04/23/22	BD	
Phenol	Not Detected	5	μg/L	04/23/22	BD	
Pyrene	Not Detected	5	μg/L	04/23/22	BD	
Pyridine	Not Detected	20	μg/L	04/23/22	BD	
2,4,5-Trichlorophenol	Not Detected	5	μg/L	04/23/22	BD	
2,4,6-Trichlorophenol	Not Detected	4	μg/L	04/23/22	BD	
Surrogate Standards						
2-Fluorophenol	34.6%	-	% Recovery	04/23/22	BD	
Phenol-d5	32.1%	-	% Recovery	04/23/22	BD	
Nitrobenzene-d5	45.1%	-	% Recovery	04/23/22	BD	
2-Fluorobiphenyl	54.6%	-	% Recovery	04/23/22	BD	
2,4,6-Tribromophenol	44.3%	-	% Recovery	04/23/22	BD	
Terphenyl-d14	42.5%	-	% Recovery	04/23/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022

Ann Arbor Housing 188EM22001 31 of 83

Sample Description:	ST Sewer, 12	ST Sewer, 1202, 4/19/22					
Laboratory ID:	12245-6	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
Michigan Metals							
Arsenic	Not Detected	5	μg/L	04/26/22	DS		
Barium	452	100	μg/L	04/26/22	DS		
Cadmium	Not Detected	1	μg/L	04/26/22	DS		
Chromium	Not Detected	5	μg/L	04/26/22	DS		
Copper	Not Detected	4	μg/L	04/26/22	DS		
Lead	Not Detected	3	μg/L	04/26/22	DS		
Mercury	Not Detected	0.2	μg/L	04/27/22	DS		
Selenium	Not Detected	5	μg/L	04/26/22	DS		
Silver	Not Detected	0.2	μg/L	04/26/22	DS		
Zinc	Not Detected	50	μg/L	04/26/22	DS		
Total Petroleum Hydrocarbons							
GRO (C ₆ -C ₁₀)	146	100	μg/L	04/26/22	BD		
DRO (C ₁₀ -C ₂₈)	132	100	μg/L	04/26/22	DS		
ORO (C ₂₈ -C ₃₄)	Not Detected	200	μg/L	04/29/22	DS		
Analysis Information							
SVOC Extraction	Completed	-	-	04/22/22	LB		
TPH-DRO/ ORO Extraction	Completed	-	-	04/23/22	LB		
Mercury Digestion	Completed	-	-	04/26/22	LB		
Metals Digestion	Completed	-		04/26/22	LB		

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 32 of 83

Sample Description:	Dup, 0000, 4/19/22					
Laboratory ID:	12245-7	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	50	μg/L	04/26/22	BD	
Benzene	Not Detected	1	μg/L	04/26/22	BD	
Bromobenzene	Not Detected	1	μg/L	04/26/22	BD	
Bromochloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromodichloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromoform	Not Detected	1	μg/L	04/26/22	BD	
Bromomethane	Not Detected	5	μg/L	04/26/22	BD	
2-Butanone (MEK)	Not Detected	25	μg/L	04/26/22	BD	
n-Butylbenzene	14	1	μg/L	04/26/22	BD	
sec-Butylbenzene	6	1	μg/L	04/26/22	BD	
tert-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Carbon disulfide	Not Detected	5	μg/L	04/26/22	BD	
Carbon tetrachloride	Not Detected	1	μg/L	04/26/22	BD	
Chlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Chloroethane	Not Detected	5	μg/L	04/26/22	BD	
Chloroform	Not Detected	1	μg/L	04/26/22	BD	
Chloromethane	Not Detected	5	μg/L	04/26/22	BD	
2-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
4-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
Dibromochloromethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	0.2	μg/L	04/26/22	BD	
Dibromomethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,4-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Dichlorodifluoromethane	Not Detected	5	μg/L	04/26/22	BD	
1,1-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
cis-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
trans-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
2,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 33 of 83

Sample Description:	Dup, 0000, 4/19/22					
Laboratory ID:	12245-7	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	5	1	μg/L	04/26/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	0.2	μg/L	04/26/22	BD	
Hexachlorobutadiene	Not Detected	0.2	μg/L	04/26/22	BD	
2-Hexanone	Not Detected	50	μg/L	04/26/22	BD	
Isopropyl benzene	15	5	μg/L	04/26/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	50	μg/L	04/26/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	5	μg/L	04/26/22	BD	
Methylene chloride	Not Detected	5	μg/L	04/26/22	BD	
2-Methylnapthalene	21	5	μg/L	04/26/22	BD	
Naphthalene	32	5	μg/L	04/26/22	BD	
n-Propyl benzene	46	1	μg/L	04/26/22	BD	
Styrene	Not Detected	1	μg/L	04/26/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
Tetrachloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Tetrahydrofuran	Not Detected	90	μg/L	04/26/22	BD	
Toluene	Not Detected	1	μ g/L	04/26/22	BD	
1,2,3-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,2,4-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,1,1-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
Trichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Trichlorofluoromethane	Not Detected	1	μg/L	04/26/22	BD	
1,2,3-Trichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,2,4-Trimethylbenzene	2	1	μg/L	04/26/22	BD	
1,3,5-Trimethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Vinyl Acetate	Not Detected	100	μg/L	04/26/22	BD	
Vinyl chloride	Not Detected	1	μg/L	04/26/22	BD	
Xylene (Total)	Not Detected	3	μg/L	04/26/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	88.6%	-	% Recovery	04/26/22	BD	
Toluene-d8	95.5%	-	% Recovery	04/26/22	BD	
4-Bromofluorobenzene	101%	-	% Recovery	04/26/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 34 of 83

Sample Description:	Dup, 0000, 4/	/19/22				
Laboratory ID:	12245-7	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Semi-Volatile Organic Cmpds						
Acenaphthene	Not Detected	5	μg/L	04/23/22	BD	
Acenaphthylene	Not Detected	5	μg/L	04/23/22	BD	
Aniline	Not Detected	4	μg/L	04/23/22	BD	
Anthracene	Not Detected	5	μg/L	04/23/22	BD	
Azobenzene	Not Detected	2	μg/L	04/23/22	BD	
Benzidine	Not Detected	2	μg/L	04/23/22	BD	
Benzo(a)anthracene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(b)fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(k)fluoranthene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(g,h,i)perylene	Not Detected	1	μg/L	04/23/22	BD	
Benzo(a)pyrene	Not Detected	1	μg/L	04/23/22	BD	
Benzyl alcohol	Not Detected	50	μg/L	04/23/22	BD	
Bis(2-chloroethyl)ether	Not Detected	1	μg/L	04/23/22	BD	
Bis(2-chloroisopropyl)ether	Not Detected	5	μg/L	04/23/22	BD	
Bis(2-chloroethoxy)methane	Not Detected	5	μg/L	04/23/22	BD	
Bis(2-ethylhexyl)phthalate	Not Detected	5	μg/L	04/23/22	BD	
4-Bromophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD	
Butyl benzyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
Carbazole	Not Detected	10	μg/L	04/23/22	BD	
4-Chloroaniline	Not Detected	10	μg/L	04/23/22	BD	
4-Chloro-3-methylphenol	Not Detected	5	μg/L	04/23/22	BD	
2-Chloronaphthalene (beta)	Not Detected	5	μg/L	04/23/22	BD	
2-Chlorophenol	Not Detected	10	μg/L	04/23/22	BD	
4-Chlorophenyl phenyl ether	Not Detected	5	μg/L	04/23/22	BD	
Chrysene	Not Detected	1	μg/L	04/23/22	BD	
Di-n-butylphthalate	Not Detected	5	μg/L	04/23/22	BD	
Di-n-octyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
Dibenzo(a,h)anthracene	Not Detected	2	μg/L	04/23/22	BD	
Dibenzofuran	Not Detected	4	μg/L	04/23/22	BD	
3,3'-Dichlorobenzidine	Not Detected	2	μg/L	04/23/22	BD	
2,4-Dichlorophenol	Not Detected	10	μg/L	04/23/22	BD	
Diethylphthalate	Not Detected	5	μg/L	04/23/22	BD	
Dimethyl phthalate	Not Detected	5	μg/L	04/23/22	BD	
2,4-Dimethylphenol	Not Detected	5	μg/L	04/23/22	BD	
2,4-Dinitrophenol	Not Detected	25	μg/L	04/23/22	BD	
2,4-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD	
2,6-Dinitrotoluene	Not Detected	5	μg/L	04/23/22	BD	
continued						

E D J Reporting limit is elevated Result is from a dilution Result should be considered estimated

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 35 of 83

Sample Description:	Dup, 0000, 4/19/22						
Laboratory ID:	12245-7	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
SVOC's, Cont'd							
Fluoranthene	Not Detected	1	μg/L	04/23/22	BD		
Fluorene	Not Detected	5	μg/L	04/23/22	BD		
Hexachlorobenzene	Not Detected	1	μg/L	04/23/22	BD		
Hexachlorocyclopentadiene	Not Detected	5	μg/L	04/23/22	BD		
Hexachloroethane	Not Detected	5	μg/L	04/23/22	BD		
Indeno(1,2,3-cd)pyrene	Not Detected	2	μg/L	04/23/22	BD		
Isophorone	Not Detected	5	μg/L	04/23/22	BD		
2-Methyl-4,6-Dinitrophenol	Not Detected	20	μg/L	04/23/22	BD		
2-Methylnaphthalene	7	5	μg/L	04/23/22	BD		
2-Methylphenol	Not Detected	10	μg/L	04/23/22	BD		
4-Methylphenol	Not Detected	10	μg/L	04/23/22	BD		
Methylphenols (total)	Not Detected	30	μg/L	04/23/22	BD		
Naphthalene	7	5	μg/L	04/23/22	BD		
2-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD		
3-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD		
4-Nitroaniline	Not Detected	25	μg/L	04/23/22	BD		
Nitrobenzene	Not Detected	3	μg/L	04/23/22	BD		
2-Nitrophenol	Not Detected	5	μg/L	04/23/22	BD		
4-Nitrophenol	Not Detected	25	μg/L	04/23/22	BD		
N-Nitrosodi-n-propylamine	Not Detected	5	μg/L	04/23/22	BD		
N-Nitrosodiphenylamine	Not Detected	5	μg/L	04/23/22	BD		
Pentachlorophenol	Not Detected	1	μg/L	04/23/22	BD		
Phenanthrene	Not Detected	2	μg/L	04/23/22	BD		
Phenol	Not Detected	5	μg/L	04/23/22	BD		
Pyrene	Not Detected	5	μg/L	04/23/22	BD		
Pyridine	Not Detected	20	μg/L	04/23/22	BD		
2,4,5-Trichlorophenol	Not Detected	5	μg/L	04/23/22	BD		
2,4,6-Trichlorophenol	Not Detected	4	μg/L	04/23/22	BD		
Surrogate Standards							
2-Fluorophenol	25.1%	-	% Recovery	04/23/22	BD		
Phenol-d5	25.4%	-	% Recovery	04/23/22	BD		
Nitrobenzene-d5	37.5%	-	% Recovery	04/23/22	BD		
2-Fluorobiphenyl	45.1%	-	% Recovery	04/23/22	BD		
2,4,6-Tribromophenol	38.5%	-	% Recovery	04/23/22	BD		
Terphenyl-d14	39.4%	-	% Recovery	04/23/22	BD		
continued							

Internal Standard results outside of acceptance limits

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 36 of 83

Sample Description:	Dup, 0000, 4/	Dup, 0000, 4/19/22						
Laboratory ID:	12245-7	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers		
Total Petroleum Hydrocarbons								
GRO (C ₆ -C ₁₀)	3,050	100	μg/L	04/26/22	BD			
DRO (C ₁₀ -C ₂₈)	684	100	μg/L	04/26/22	DS			
ORO (C ₂₈ -C ₃₄)	Not Detected	200	μg/L	04/29/22	DS			
Analysis Information								
SVOC Extraction	Completed	-	-	04/22/22	LB			
TPH-DRO/ ORO Extraction	Completed	-	-	04/23/22	LB			

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 37 of 83

Sample Description:	GP/TMW-1,	3-4', 0915, 4/	19/22			
Laboratory ID:	12245-8	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	1,000	μg/Kg, dry wt.	04/26/22	BD	
Benzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Bromobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Bromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Bromodichloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Bromoform	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Bromomethane	Not Detected	200	μg/Kg, dry wt.	04/26/22	BD	
2-Butanone (MEK)	Not Detected	750	μg/Kg, dry wt.	04/26/22	BD	
n-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
sec-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
tert-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Carbon disulfide	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Carbon tetrachloride	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Chlorobenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Chloroethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Chloroform	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Chloromethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
2-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
4-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Dibromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	10	μg/Kg, dry wt.	04/26/22	BD	
Dibromomethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,2-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,3-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,4-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Dichlorodifluoromethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,1-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,2-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
cis-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
trans-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,3-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
2,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,3-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 38 of 83

Sample Description:	GP/TMW-1,	3-4', 0915, 4/	19/22			
Laboratory ID:	12245-8	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	20	μg/Kg, dry wt.	04/26/22	BD	
Hexachlorobutadiene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
2-Hexanone	Not Detected	2,500	μg/Kg, dry wt.	04/26/22	BD	
Isopropyl benzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	2,500	μg/Kg, dry wt.	04/26/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Methylene chloride	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
2-Methylnapthalene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Naphthalene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
n-Propylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Styrene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Tetrachloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Tetrahydrofuran	Not Detected	1,000	μg/Kg, dry wt.	04/26/22	BD	
Toluene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,3-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,2,4-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,1,1-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1,2-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Trichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Trichlorofluoromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,3-Trichloropropane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,4-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,3,5-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Vinyl Acetate	Not Detected	5,000	μg/Kg, dry wt.	04/26/22	BD	
Vinyl Chloride	Not Detected	40	μg/Kg, dry wt.	04/26/22	BD	
Xylene (Total)	Not Detected	150	μg/Kg, dry wt.	04/26/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	94.2%	-	% Recovery	04/26/22	BD	
Toluene-d8	104%	-	% Recovery	04/26/22	BD	
4-Bromofluorobenzene	101%	-	% Recovery	04/26/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 39 of 83

Sample Description:	GP/TMW-1, 3-4', 0915, 4/19/22						
Laboratory ID:	12245-8	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
Semi-Volatile Organic Cmpds							
Acenaphthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Acenaphthylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Aniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Azobenzene	Not Detected	200	μg/Kg, dry wt.	04/27/22	BD		
Benzidine	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD		
Benzo(a)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(b)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(k)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(g,h,i)perylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(a)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzyl alcohol	Not Detected	3,300	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroethyl)ether	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroisopropyl)ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroethoxy)methane	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-ethylhexyl)phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Bromophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Butyl benzyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Carbazole	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chloroaniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chloro-3-methylphenol	Not Detected	280	μg/Kg, dry wt.	04/27/22	BD		
2-Chloronaphthalene (beta)	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Chlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chlorophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Chrysene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Di-n-butylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Di-n-octyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dibenzo(a,h)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dibenzofuran	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
3,3'-Dichlorobenzidine	Not Detected	2,000	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Diethylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dimethyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dimethylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,6-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
continued							

E D J Reporting limit is elevated Result is from a dilution Result should be considered estimated

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 40 of 83

Sample Description:	GP/TMW-1,	3-4', 0915, 4/	19/22			
Laboratory ID:	12245-8	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
SVOC's, Cont'd						
Fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Fluorene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Hexachlorobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Hexachlorocyclopentadiene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Hexachloroethane	Not Detected	300	μg/Kg, dry wt.	04/27/22	BD	
Indeno(1,2,3-cd)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Isophorone	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Methyl-4,6-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
2-Methylnaphthalene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Methylphenols (total)	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD	
Naphthalene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
3-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
4-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
Nitrobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Nitrophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Nitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
N-Nitrosodi-n-propylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
N-Nitrosodiphenylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Pentachlorophenol	Not Detected	20	μg/Kg, dry wt.	04/27/22	BD	
Phenanthrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Phenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Pyridine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,4,5-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,4,6-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Surrogate Standards						
2-Fluorophenol	72.6%	-	% Recovery	04/27/22	BD	
Phenol-d5	73.9%	-	% Recovery	04/27/22	BD	
Nitrobenzene-d5	61.1%	-	% Recovery	04/27/22	BD	
2-Fluorobiphenyl	65.4%	-	% Recovery	04/27/22	BD	
2,4,6-Tribromophenol	76.7%	-	% Recovery	04/27/22	BD	
Terphenyl-d14	81.3%	-	% Recovery	04/27/22	BD	
continued						

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 41 of 83

Sample Description:	GP/TMW-1, 3	GP/TMW-1, 3-4', 0915, 4/19/22							
Laboratory ID:	12245-8	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers			
Michigan Metals									
Arsenic	614	100	μg/Kg, dry wt.	04/26/22	DS				
Barium	41,600	1,000	μg/Kg, dry wt.	04/26/22	DS				
Cadmium	Not Detected	200	μg/Kg, dry wt.	04/26/22	DS				
Chromium	Not Detected	2,000	μg/Kg, dry wt.	04/26/22	DS				
Copper	3,060	1,000	μg/Kg, dry wt.	04/26/22	DS				
Lead	2,050	1,000	μg/Kg, dry wt.	04/26/22	DS				
Mercury	Not Detected	50	μg/Kg, dry wt.	04/27/22	DS				
Selenium	Not Detected	200	μg/Kg, dry wt.	04/26/22	DS				
Silver	Not Detected	100	μg/Kg, dry wt.	04/26/22	DS				
Zinc	10,600	1,000	μg/Kg, dry wt.	04/26/22	DS				
Total Petroleum Hydrocarbons									
DRO (C ₁₀ -C ₂₈)	Not Detected	20,000	μg/Kg, dry wt.	04/26/22	DS	E, C			
ORO (C ₂₈ -C ₃₄)	Not Detected	20,000	μg/Kg, dry wt.	04/29/22	DS				
Analysis Information									
Dry Weight Solids	87.6%	-	% by weight	04/22/22	LB				
SVOC Extraction	Completed	-	-	04/22/22	LB				
TPH-DRO/ ORO Extraction	Completed	-	-	04/24/22	LB				
Mercury Digestion	Completed	-	-	04/26/22	LB				
Metals Digestion	Completed	-	-	04/26/22	LB				

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 42 of 83

Sample Description:	GP/TMW-2, 3.5-4.5', 1011, 4/19/22						
Laboratory ID:	12245-9	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
Volatile Organic Compounds							
Acetone	Not Detected	1,000	μg/Kg, dry wt.	04/26/22	BD		
Benzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
Bromobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
Bromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
Bromodichloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
Bromoform	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
Bromomethane	Not Detected	200	μg/Kg, dry wt.	04/26/22	BD		
2-Butanone (MEK)	Not Detected	750	μg/Kg, dry wt.	04/26/22	BD		
n-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
sec-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
tert-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
Carbon disulfide	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD		
Carbon tetrachloride	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
Chlorobenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
Chloroethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD		
Chloroform	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
Chloromethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD		
2-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
4-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
Dibromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
1,2-Dibromo-3-chloropropane	Not Detected	10	μg/Kg, dry wt.	04/26/22	BD		
Dibromomethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD		
1,2-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
1,3-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
1,4-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
Dichlorodifluoromethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD		
1,1-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
1,2-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
1,1-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
cis-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
trans-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
1,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
1,3-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
2,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
1,1-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
1,3-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
continued							

M Matrix interference observed
F Matrix Spike four times rule ap
C See Case Narrative

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: **12245**May 2, 2022
Ann Arbor Housing
188EM22001
43 of 83

Sample Description:	GP/TMW-2,	3.5-4.5', 1011	, 4/19/22			
Laboratory ID:	12245-9	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	20	μg/Kg, dry wt.	04/26/22	BD	
Hexachlorobutadiene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
2-Hexanone	Not Detected	2,500	μg/Kg, dry wt.	04/26/22	BD	
Isopropyl benzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	2,500	μg/Kg, dry wt.	04/26/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Methylene chloride	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
2-Methylnapthalene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Naphthalene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
n-Propylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Styrene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Tetrachloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Tetrahydrofuran	Not Detected	1,000	μg/Kg, dry wt.	04/26/22	BD	
Toluene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,3-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,2,4-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,1,1-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1,2-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Trichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Trichlorofluoromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,3-Trichloropropane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,4-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,3,5-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Vinyl Acetate	Not Detected	5,000	μg/Kg, dry wt.	04/26/22	BD	
Vinyl Chloride	Not Detected	40	μg/Kg, dry wt.	04/26/22	BD	
Xylene (Total)	Not Detected	150	μg/Kg, dry wt.	04/26/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	90.0%	-	% Recovery	04/26/22	BD	
Toluene-d8	106%	-	% Recovery	04/26/22	BD	
4-Bromofluorobenzene	105%	-	% Recovery	04/26/22	BD	
continued						

M Matrix interference observed

F Matrix Spike four times rule applied C See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 44 of 83

Sample Description:	GP/TMW-2, 3.5-4.5', 1011, 4/19/22						
Laboratory ID:	12245-9	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
Semi-Volatile Organic Cmpds							
Acenaphthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Acenaphthylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Aniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Azobenzene	Not Detected	200	μg/Kg, dry wt.	04/27/22	BD		
Benzidine	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD		
Benzo(a)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(b)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(k)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(g,h,i)perylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(a)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzyl alcohol	Not Detected	3,300	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroethyl)ether	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroisopropyl)ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroethoxy)methane	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-ethylhexyl)phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Bromophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Butyl benzyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Carbazole	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chloroaniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chloro-3-methylphenol	Not Detected	280	μg/Kg, dry wt.	04/27/22	BD		
2-Chloronaphthalene (beta)	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Chlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chlorophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Chrysene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Di-n-butylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Di-n-octyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dibenzo(a,h)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dibenzofuran	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
3,3'-Dichlorobenzidine	Not Detected	2,000	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Diethylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dimethyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dimethylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,6-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
continued							

E D J Reporting limit is elevated Result is from a dilution Result should be considered estimated

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 45 of 83

Sample Description:	GP/TMW-2, 3.5-4.5', 1011, 4/19/22						
Laboratory ID:	12245-9	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
SVOC's, Cont'd							
Fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Fluorene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Hexachlorobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Hexachlorocyclopentadiene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Hexachloroethane	Not Detected	300	μg/Kg, dry wt.	04/27/22	BD		
Indeno(1,2,3-cd)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Isophorone	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Methyl-4,6-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
2-Methylnaphthalene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Methylphenols (total)	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD		
Naphthalene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
3-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
4-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
Nitrobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Nitrophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Nitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
N-Nitrosodi-n-propylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
N-Nitrosodiphenylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Pentachlorophenol	Not Detected	20	μg/Kg, dry wt.	04/27/22	BD		
Phenanthrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Phenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Pyridine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4,5-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4,6-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Surrogate Standards							
2-Fluorophenol	74.8%	-	% Recovery	04/27/22	BD		
Phenol-d5	76.7%	-	% Recovery	04/27/22	BD		
Nitrobenzene-d5	64.7%	-	% Recovery	04/27/22	BD		
2-Fluorobiphenyl	69.1%	-	% Recovery	04/27/22	BD		
2,4,6-Tribromophenol	79.7%	-	% Recovery	04/27/22	BD		
Terphenyl-d14	85.9%	-	% Recovery	04/27/22	BD		
continued							

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 46 of 83

Sample Description:	GP/TMW-2,	GP/TMW-2, 3.5-4.5', 1011, 4/19/22							
Laboratory ID:	12245-9	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers			
Total Petroleum Hydrocarbons									
GRO (C ₆ -C ₁₀)	Not Detected	10,000	μg/Kg, dry wt.	04/26/22	BD				
DRO (C ₁₀ -C ₂₈)	Not Detected	20,000	μg/Kg, dry wt.	04/26/22	DS	E, C			
ORO (C ₂₈ -C ₃₄)	Not Detected	20,000	μg/Kg, dry wt.	04/29/22	DS				
Analysis Information									
Dry Weight Solids	92.3%	-	% by weight	04/22/22	LB				
SVOC Extraction	Completed	-	-	04/22/22	LB				
TPH-DRO/ ORO Extraction	Completed	-	-	04/24/22	LB				

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 47 of 83

Sample Description:	GP/TMW-3,	4-5', 1105, 4/	19/22			
Laboratory ID:	12245-10	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD	
Benzene	100	50	μg/Kg, dry wt.	04/27/22	BD	
Bromobenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bromodichloromethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bromoform	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bromomethane	Not Detected	200	μg/Kg, dry wt.	04/27/22	BD	
2-Butanone (MEK)	Not Detected	750	μg/Kg, dry wt.	04/27/22	BD	
n-Butylbenzene	2,240	50	μg/Kg, dry wt.	04/27/22	BD	
sec-Butylbenzene	667	50	μg/Kg, dry wt.	04/27/22	BD	
tert-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Carbon disulfide	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
Carbon tetrachloride	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Chlorobenzene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Chloroethane	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
Chloroform	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Chloromethane	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
2-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
4-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Dibromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	10	μg/Kg, dry wt.	04/27/22	BD	
Dibromomethane	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
1,2-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,3-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,4-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Dichlorodifluoromethane	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
1,1-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,2-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,1-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
cis-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
trans-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,3-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
2,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,1-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,3-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
continued						

D J

Reporting limit is elevated Result is from a dilution Result should be considered estimated Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 48 of 83

Sample Description:	GP/TMW-3,	4-5', 1105, 4/	19/22			
Laboratory ID:	12245-10	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	246	50	μg/Kg, dry wt.	04/27/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	20	μg/Kg, dry wt.	04/27/22	BD	
Hexachlorobutadiene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
2-Hexanone	Not Detected	2,500	μg/Kg, dry wt.	04/27/22	BD	
Isopropyl benzene	862	250	μg/Kg, dry wt.	04/27/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	2,500	μg/Kg, dry wt.	04/27/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
Methylene chloride	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
2-Methylnapthalene	5,190	250	μg/Kg, dry wt.	04/27/22	BD	
Naphthalene	3,930	250	μg/Kg, dry wt.	04/27/22	BD	
n-Propylbenzene	3,980	100	μg/Kg, dry wt.	04/27/22	BD	
Styrene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Tetrachloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Tetrahydrofuran	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD	
Toluene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,2,3-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
1,2,4-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
1,1,1-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,1,2-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Trichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Trichlorofluoromethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,2,3-Trichloropropane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,2,4-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,3,5-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Vinyl Acetate	Not Detected	5,000	μg/Kg, dry wt.	04/27/22	BD	
Vinyl Chloride	Not Detected	40	μg/Kg, dry wt.	04/27/22	BD	
Xylene (Total)	Not Detected	150	μg/Kg, dry wt.	04/27/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	100%	-	% Recovery	04/27/22	BD	
Toluene-d8	89.1%	-	% Recovery	04/27/22	BD	
4-Bromofluorobenzene	116%	-	% Recovery	04/27/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 49 of 83

Sample Description:	GP/TMW-3, 4-5', 1105, 4/19/22						
Laboratory ID:	12245-10	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
Semi-Volatile Organic Cmpds							
Acenaphthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Acenaphthylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Aniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Azobenzene	Not Detected	200	μg/Kg, dry wt.	04/27/22	BD		
Benzidine	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD		
Benzo(a)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(b)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(k)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(g,h,i)perylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(a)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzyl alcohol	Not Detected	3,300	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroethyl)ether	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroisopropyl)ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroethoxy)methane	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-ethylhexyl)phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Bromophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Butyl benzyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Carbazole	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chloroaniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chloro-3-methylphenol	Not Detected	280	μg/Kg, dry wt.	04/27/22	BD		
2-Chloronaphthalene (beta)	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Chlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chlorophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Chrysene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Di-n-butylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Di-n-octyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dibenzo(a,h)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dibenzofuran	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
3,3'-Dichlorobenzidine	Not Detected	2,000	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Diethylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dimethyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dimethylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,6-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
continued							

- Internal Standard results outside of acceptance limits
- QC spike recovery outside of acceptance limits RPD outside of acceptance limits
- E D J
- Reporting limit is elevated Result is from a dilution Result should be considered estimated
- Matrix interference observed
- Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 50 of 83

Sample Description:	GP/TMW-3,	4-5', 1105, 4/	19/22			
Laboratory ID:	12245-10	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
SVOC's, Cont'd						
Fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Fluorene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Hexachlorobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Hexachlorocyclopentadiene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Hexachloroethane	Not Detected	300	μg/Kg, dry wt.	04/27/22	BD	
Indeno(1,2,3-cd)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Isophorone	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Methyl-4,6-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
2-Methylnaphthalene	3,530	330	μg/Kg, dry wt.	04/27/22	BD	
2-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Methylphenols (total)	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD	
Naphthalene	2,880	330	μg/Kg, dry wt.	04/27/22	BD	
2-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
3-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
4-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
Nitrobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Nitrophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Nitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
N-Nitrosodi-n-propylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
N-Nitrosodiphenylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Pentachlorophenol	Not Detected	20	μg/Kg, dry wt.	04/27/22	BD	
Phenanthrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Phenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Pyridine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,4,5-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,4,6-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Surrogate Standards						
2-Fluorophenol	68.3%	-	% Recovery	04/27/22	BD	
Phenol-d5	70.8%	-	% Recovery	04/27/22	BD	
Nitrobenzene-d5	58.7%	-	% Recovery	04/27/22	BD	
2-Fluorobiphenyl	65.1%	-	% Recovery	04/27/22	BD	
2,4,6-Tribromophenol	79.6%	-	% Recovery	04/27/22	BD	
Terphenyl-d14	79.5%	-	% Recovery	04/27/22	BD	
continued						

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 51 of 83

Sample Description:	GP/TMW-3,	GP/TMW-3, 4-5', 1105, 4/19/22							
Laboratory ID:	12245-10	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers			
Total Petroleum Hydrocarbons									
GRO (C ₆ -C ₁₀)	624,000	100,000	μg/Kg, dry wt.	04/26/22	BD	E, D			
DRO (C ₁₀ -C ₂₈)	196,000	20,000	μg/Kg, dry wt.	04/26/22	DS	E, C			
ORO (C ₂₈ -C ₃₄)	111,000	20,000	μg/Kg, dry wt.	04/29/22	DS				
Analysis Information									
Dry Weight Solids	83.3%	-	% by weight	04/22/22	LB				
SVOC Extraction	Completed	-	-	04/22/22	LB				
TPH-DRO/ ORO Extraction	Completed	-	-	04/24/22	LB				

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 52 of 83

Sample Description:	GP/TMW-4,	3-4', 1212, 4/	19/22			
Laboratory ID:	12245-11	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD	
Benzene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Bromobenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bromodichloromethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bromoform	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bromomethane	Not Detected	200	μg/Kg, dry wt.	04/27/22	BD	
2-Butanone (MEK)	Not Detected	750	μg/Kg, dry wt.	04/27/22	BD	
n-Butylbenzene	901	50	μg/Kg, dry wt.	04/27/22	BD	
sec-Butylbenzene	1,570	50	μg/Kg, dry wt.	04/27/22	BD	
tert-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Carbon disulfide	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
Carbon tetrachloride	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Chlorobenzene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Chloroethane	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
Chloroform	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Chloromethane	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
2-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
4-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Dibromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	10	μg/Kg, dry wt.	04/27/22	BD	
Dibromomethane	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
1,2-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,3-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,4-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Dichlorodifluoromethane	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
1,1-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,2-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,1-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
cis-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
trans-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,3-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
2,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,1-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,3-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
continued						

Internal Standard results outside of acceptance limits

QC spike recovery outside of acceptance limits RPD outside of acceptance limits

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 53 of 83

Sample Description:	GP/TMW-4, 3-4', 1212, 4/19/22						
Laboratory ID:	12245-11	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
VOC's, Cont'd							
Ethylbenzene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD		
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	20	μg/Kg, dry wt.	04/27/22	BD		
Hexachlorobutadiene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD		
2-Hexanone	Not Detected	2,500	μg/Kg, dry wt.	04/27/22	BD		
Isopropyl benzene	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD		
4-Methyl-2-pentanone (MIBK)	Not Detected	2,500	μg/Kg, dry wt.	04/27/22	BD		
Methyl-t-butyl ether (MTBE)	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD		
Methylene chloride	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD		
2-Methylnapthalene	4,230	250	μg/Kg, dry wt.	04/27/22	BD		
Naphthalene	493	250	μg/Kg, dry wt.	04/27/22	BD		
n-Propylbenzene	403	100	μg/Kg, dry wt.	04/27/22	BD		
Styrene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD		
1,1,1,2-Tetrachloroethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD		
1,1,2,2-Tetrachloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD		
Tetrachloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD		
Tetrahydrofuran	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD		
Toluene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD		
1,2,3-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD		
1,2,4-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD		
1,1,1-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD		
1,1,2-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD		
Trichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD		
Trichlorofluoromethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD		
1,2,3-Trichloropropane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD		
1,2,4-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD		
1,3,5-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD		
Vinyl Acetate	Not Detected	5,000	μg/Kg, dry wt.	04/27/22	BD		
Vinyl Chloride	Not Detected	40	μg/Kg, dry wt.	04/27/22	BD		
Xylene (Total)	Not Detected	150	μg/Kg, dry wt.	04/27/22	BD		
Surrogate Standards							
1,2-Dichloroethane-d4	90.3%	-	% Recovery	04/27/22	BD		
Toluene-d8	103%	-	% Recovery	04/27/22	BD		
4-Bromofluorobenzene	126%	-	% Recovery	04/27/22	BD		
continued							

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 54 of 83

Sample Description:	GP/TMW-4, 3-4', 1212, 4/19/22						
Laboratory ID:	12245-11	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
Semi-Volatile Organic Cmpds							
Acenaphthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Acenaphthylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Aniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Azobenzene	Not Detected	200	μg/Kg, dry wt.	04/27/22	BD		
Benzidine	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD		
Benzo(a)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(b)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(k)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(g,h,i)perylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(a)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzyl alcohol	Not Detected	3,300	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroethyl)ether	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroisopropyl)ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroethoxy)methane	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-ethylhexyl)phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Bromophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Butyl benzyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Carbazole	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chloroaniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chloro-3-methylphenol	Not Detected	280	μg/Kg, dry wt.	04/27/22	BD		
2-Chloronaphthalene (beta)	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Chlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chlorophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Chrysene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Di-n-butylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Di-n-octyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dibenzo(a,h)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dibenzofuran	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
3,3'-Dichlorobenzidine	Not Detected	2,000	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Diethylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dimethyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dimethylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,6-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
continued							

QC spike recovery outside of acceptance limits RPD outside of acceptance limits

Matrix Spike four times rule applied See Case Narrative

Internal Standard results outside of acceptance limits

E D J Reporting limit is elevated Result is from a dilution Result should be considered estimated

Matrix interference observed

Report Date: Project Name: Project Number: Page:

12245 May 2, 2022 Ann Arbor Housing 188EM22001 55 of 83

Sample Description:	GP/TMW-4, 3-4', 1212, 4/19/22						
Laboratory ID:	12245-11	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
SVOC's, Cont'd							
Fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Fluorene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Hexachlorobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Hexachlorocyclopentadiene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Hexachloroethane	Not Detected	300	μg/Kg, dry wt.	04/27/22	BD		
Indeno(1,2,3-cd)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Isophorone	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Methyl-4,6-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
2-Methylnaphthalene	2,070	330	μg/Kg, dry wt.	04/27/22	BD		
2-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Methylphenols (total)	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD		
Naphthalene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
3-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
4-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
Nitrobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Nitrophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Nitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
N-Nitrosodi-n-propylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
N-Nitrosodiphenylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Pentachlorophenol	Not Detected	20	μg/Kg, dry wt.	04/27/22	BD		
Phenanthrene	779	330	μg/Kg, dry wt.	04/27/22	BD		
Phenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Pyridine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4,5-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4,6-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Surrogate Standards							
2-Fluorophenol	81.9%	-	% Recovery	04/27/22	BD		
Phenol-d5	83.7%	-	% Recovery	04/27/22	BD		
Nitrobenzene-d5	77.8%	-	% Recovery	04/27/22	BD		
2-Fluorobiphenyl	78.3%	-	% Recovery	04/27/22	BD		
2,4,6-Tribromophenol	97.1%	-	% Recovery	04/27/22	BD		
Terphenyl-d14	91.5%	-	% Recovery	04/27/22	BD		
continued			-				

D J

Reporting limit is elevated Result is from a dilution Result should be considered estimated

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 56 of 83

Sample Description:	GP/TMW-4,	GP/TMW-4, 3-4', 1212, 4/19/22							
Laboratory ID:	12245-11	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers			
Total Petroleum Hydrocarbons									
GRO (C ₆ -C ₁₀)	765,000	100,000	μg/Kg, dry wt.	04/26/22	BD	E, D			
DRO (C ₁₀ -C ₂₈)	431,000	10,000	μg/Kg, dry wt.	04/26/22	DS	E, C			
ORO (C ₂₈ -C ₃₄)	427,000	20,000	μg/Kg, dry wt.	04/29/22	DS				
Analysis Information									
Dry Weight Solids	89.3%	-	% by weight	04/22/22	LB				
SVOC Extraction	Completed	-	-	04/22/22	LB				
TPH-DRO/ ORO Extraction	Completed	-	-	04/24/22	LB				

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 57 of 83

Sample Description:	GP/TMW-5,	4-5', 1316, 4/	19/22			
Laboratory ID:	12245-12	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	1,000	μg/Kg, dry wt.	04/26/22	BD	
Benzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Bromobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Bromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Bromodichloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Bromoform	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Bromomethane	Not Detected	200	μg/Kg, dry wt.	04/26/22	BD	
2-Butanone (MEK)	Not Detected	750	μg/Kg, dry wt.	04/26/22	BD	
n-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
sec-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
tert-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Carbon disulfide	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Carbon tetrachloride	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Chlorobenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Chloroethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Chloroform	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Chloromethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
2-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
4-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Dibromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	10	μg/Kg, dry wt.	04/26/22	BD	
Dibromomethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,2-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,3-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,4-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Dichlorodifluoromethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,1-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,2-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
cis-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
trans-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,3-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
2,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,3-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
continued						

- Internal Standard results outside of acceptance limits
- QC spike recovery outside of acceptance limits RPD outside of acceptance limits
- Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 58 of 83

Sample Description:	GP/TMW-5,	4-5', 1316, 4/	19/22			
Laboratory ID:	12245-12	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	20	μg/Kg, dry wt.	04/26/22	BD	
Hexachlorobutadiene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
2-Hexanone	Not Detected	2,500	μg/Kg, dry wt.	04/26/22	BD	
Isopropyl benzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	2,500	μg/Kg, dry wt.	04/26/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Methylene chloride	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
2-Methylnapthalene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Naphthalene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
n-Propylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Styrene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Tetrachloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Tetrahydrofuran	Not Detected	1,000	μg/Kg, dry wt.	04/26/22	BD	
Toluene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,3-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,2,4-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,1,1-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1,2-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Trichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Trichlorofluoromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,3-Trichloropropane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,4-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,3,5-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Vinyl Acetate	Not Detected	5,000	μg/Kg, dry wt.	04/26/22	BD	
Vinyl Chloride	Not Detected	40	μg/Kg, dry wt.	04/26/22	BD	
Xylene (Total)	Not Detected	150	μg/Kg, dry wt.	04/26/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	96.3%	-	% Recovery	04/26/22	BD	
Toluene-d8	105%	-	% Recovery	04/26/22	BD	
4-Bromofluorobenzene	104%	-	% Recovery	04/26/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 59 of 83

Sample Description:	GP/TMW-5, 4-5', 1316, 4/19/22						
Laboratory ID:	12245-12	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
Semi-Volatile Organic Cmpds							
Acenaphthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Acenaphthylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Aniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Azobenzene	Not Detected	200	μg/Kg, dry wt.	04/27/22	BD		
Benzidine	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD		
Benzo(a)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(b)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(k)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(g,h,i)perylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(a)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzyl alcohol	Not Detected	3,300	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroethyl)ether	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroisopropyl)ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroethoxy)methane	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-ethylhexyl)phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Bromophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Butyl benzyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Carbazole	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chloroaniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chloro-3-methylphenol	Not Detected	280	μg/Kg, dry wt.	04/27/22	BD		
2-Chloronaphthalene (beta)	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Chlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chlorophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Chrysene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Di-n-butylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Di-n-octyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dibenzo(a,h)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dibenzofuran	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
3,3'-Dichlorobenzidine	Not Detected	2,000	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Diethylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dimethyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dimethylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,6-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
continued							

- Internal Standard results outside of acceptance limits
- QC spike recovery outside of acceptance limits RPD outside of acceptance limits
- E D J Reporting limit is elevated Result is from a dilution Result should be considered estimated
- Matrix interference observed

Report Date: Project Name: Project Number: Page:

12245 May 2, 2022 Ann Arbor Housing 188EM22001 60 of 83

Sample Description:	GP/TMW-5, 4-5', 1316, 4/19/22						
Laboratory ID:	12245-12	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
SVOC's, Cont'd							
Fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Fluorene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Hexachlorobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Hexachlorocyclopentadiene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Hexachloroethane	Not Detected	300	μg/Kg, dry wt.	04/27/22	BD		
Indeno(1,2,3-cd)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Isophorone	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Methyl-4,6-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
2-Methylnaphthalene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Methylphenols (total)	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD		
Naphthalene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
3-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
4-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
Nitrobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Nitrophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Nitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
N-Nitrosodi-n-propylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
N-Nitrosodiphenylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Pentachlorophenol	Not Detected	20	μg/Kg, dry wt.	04/27/22	BD		
Phenanthrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Phenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Pyridine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4,5-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4,6-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Surrogate Standards							
2-Fluorophenol	75.3%	-	% Recovery	04/27/22	BD		
Phenol-d5	77.3%	-	% Recovery	04/27/22	BD		
Nitrobenzene-d5	67.1%	-	% Recovery	04/27/22	BD		
2-Fluorobiphenyl	72.8%	-	% Recovery	04/27/22	BD		
2,4,6-Tribromophenol	91.8%	-	% Recovery	04/27/22	BD		
Terphenyl-d14	88.1%	-	% Recovery	04/27/22	BD		
continued							

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 61 of 83

Sample Description:	GP/TMW-5,	GP/TMW-5, 4-5', 1316, 4/19/22							
Laboratory ID:	12245-12	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers			
Total Petroleum Hydrocarbons									
GRO (C ₆ -C ₁₀)	Not Detected	10,000	μg/Kg, dry wt.	04/26/22	BD				
DRO (C ₁₀ -C ₂₈)	Not Detected	20,000	μg/Kg, dry wt.	04/26/22	DS	E, C			
ORO (C ₂₈ -C ₃₄)	Not Detected	20,000	μg/Kg, dry wt.	04/29/22	DS				
Analysis Information									
Dry Weight Solids	80.4%	-	% by weight	04/22/22	LB				
SVOC Extraction	Completed	-	-	04/22/22	LB				
TPH-DRO/ ORO Extraction	Completed	-	-	04/24/22	LB				

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page:

12245 May 2, 2022 Ann Arbor Housing 188EM22001 62 of 83

Sample Description:	HA-1, 2-3', 1352, 4/19/22						
Laboratory ID:	12245-13	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
Volatile Organic Compounds							
Acetone	Not Detected	1,000	μg/Kg, dry wt.	04/26/22	BD		
Benzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
Bromobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
Bromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
Bromodichloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
Bromoform	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
Bromomethane	Not Detected	200	μg/Kg, dry wt.	04/26/22	BD		
2-Butanone (MEK)	Not Detected	750	μg/Kg, dry wt.	04/26/22	BD		
n-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
sec-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
tert-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
Carbon disulfide	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD		
Carbon tetrachloride	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
Chlorobenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
Chloroethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD		
Chloroform	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
Chloromethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD		
2-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
4-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
Dibromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
1,2-Dibromo-3-chloropropane	Not Detected	10	μg/Kg, dry wt.	04/26/22	BD		
Dibromomethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD		
1,2-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
1,3-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
1,4-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD		
Dichlorodifluoromethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD		
1,1-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
1,2-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
1,1-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
cis-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
trans-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
1,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
1,3-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
2,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
1,1-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD		
continued							

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 63 of 83

Sample Description:	HA-1, 2-3', 1	352, 4/19/22				
Laboratory ID:	12245-13	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
1,3-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Ethylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	20	μg/Kg, dry wt.	04/26/22	BD	
Hexachlorobutadiene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
2-Hexanone	Not Detected	2,500	μg/Kg, dry wt.	04/26/22	BD	
Isopropyl benzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	2,500	μg/Kg, dry wt.	04/26/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Methylene chloride	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
2-Methylnapthalene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Naphthalene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
n-Propylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Styrene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Tetrachloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Tetrahydrofuran	Not Detected	1,000	μg/Kg, dry wt.	04/26/22	BD	
Toluene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,3-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,2,4-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,1,1-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1,2-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Trichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Trichlorofluoromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,3-Trichloropropane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,4-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,3,5-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Vinyl Acetate	Not Detected	5,000	μg/Kg, dry wt.	04/26/22	BD	
Vinyl Chloride	Not Detected	40	μg/Kg, dry wt.	04/26/22	BD	
Xylene (Total)	Not Detected	150	μg/Kg, dry wt.	04/26/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	93.0%	-	% Recovery	04/26/22	BD	
Toluene-d8	106%	-	% Recovery	04/26/22	BD	
4-Bromofluorobenzene	103%	-	% Recovery	04/26/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix interference observed

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 64 of 83

Sample Description:	HA-1, 2-3', 1352, 4/19/22						
Laboratory ID:	12245-13	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
Semi-Volatile Organic Cmpds							
Acenaphthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Acenaphthylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Aniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Azobenzene	Not Detected	200	μg/Kg, dry wt.	04/27/22	BD		
Benzidine	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD		
Benzo(a)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(b)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(k)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(g,h,i)perylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzo(a)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Benzyl alcohol	Not Detected	3,300	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroethyl)ether	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroisopropyl)ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-chloroethoxy)methane	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Bis(2-ethylhexyl)phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Bromophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Butyl benzyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Carbazole	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chloroaniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chloro-3-methylphenol	Not Detected	280	μg/Kg, dry wt.	04/27/22	BD		
2-Chloronaphthalene (beta)	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Chlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Chlorophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Chrysene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Di-n-butylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Di-n-octyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dibenzo(a,h)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dibenzofuran	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
3,3'-Dichlorobenzidine	Not Detected	2,000	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Diethylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Dimethyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dimethylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
2,4-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,6-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
continued							

- Internal Standard results outside of acceptance limits
- QC spike recovery outside of acceptance limits RPD outside of acceptance limits
- E D J
- Reporting limit is elevated Result is from a dilution Result should be considered estimated
- Matrix interference observed
- Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 65 of 83

Sample Description:	HA-1, 2-3', 1352, 4/19/22						
Laboratory ID:	12245-13	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers	
SVOC's, Cont'd							
Fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Fluorene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Hexachlorobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Hexachlorocyclopentadiene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Hexachloroethane	Not Detected	300	μg/Kg, dry wt.	04/27/22	BD		
Indeno(1,2,3-cd)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Isophorone	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Methyl-4,6-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
2-Methylnaphthalene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Methylphenols (total)	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD		
Naphthalene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
3-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
4-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
Nitrobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2-Nitrophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
4-Nitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD		
N-Nitrosodi-n-propylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
N-Nitrosodiphenylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Pentachlorophenol	Not Detected	20	μg/Kg, dry wt.	04/27/22	BD		
Phenanthrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Phenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Pyridine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4,5-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
2,4,6-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD		
Surrogate Standards							
2-Fluorophenol	75.4%	-	% Recovery	04/27/22	BD		
Phenol-d5	76.7%	-	% Recovery	04/27/22	BD		
Nitrobenzene-d5	66.0%	-	% Recovery	04/27/22	BD		
2-Fluorobiphenyl	70.2%	-	% Recovery	04/27/22	BD		
2,4,6-Tribromophenol	92.1%	-	% Recovery	04/27/22	BD		
Terphenyl-d14	87.1%	-	% Recovery	04/27/22	BD		
Analysis Information							
Dry Weight Solids	79.3%	-	% by weight	04/22/22	LB		
SVOC Extraction	Completed	-	-	04/22/22	LB		

E D J Reporting limit is elevated Result is from a dilution Result should be considered estimated

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 66 of 83

Sample Description:	Dup, 0000, 4	/19/22				
Laboratory ID:	12245-14	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD	
Benzene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Bromobenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bromodichloromethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bromoform	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bromomethane	Not Detected	200	μg/Kg, dry wt.	04/27/22	BD	
2-Butanone (MEK)	Not Detected	750	μg/Kg, dry wt.	04/27/22	BD	
n-Butylbenzene	393	50	μg/Kg, dry wt.	04/27/22	BD	
sec-Butylbenzene	737	50	μg/Kg, dry wt.	04/27/22	BD	
tert-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Carbon disulfide	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
Carbon tetrachloride	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Chlorobenzene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Chloroethane	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
Chloroform	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Chloromethane	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
2-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
4-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Dibromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	10	μg/Kg, dry wt.	04/27/22	BD	
Dibromomethane	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
1,2-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,3-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,4-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Dichlorodifluoromethane	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
1,1-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,2-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,1-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
cis-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
trans-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,3-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
2,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,1-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,3-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
continued			·			

Internal Standard results outside of acceptance limits

QC spike recovery outside of acceptance limits RPD outside of acceptance limits

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix interference observed Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 67 of 83

Sample Description:	Dup, 0000, 4	/19/22				
Laboratory ID:	12245-14	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	20	μg/Kg, dry wt.	04/27/22	BD	
Hexachlorobutadiene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
2-Hexanone	Not Detected	2,500	μg/Kg, dry wt.	04/27/22	BD	
Isopropyl benzene	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	2,500	μg/Kg, dry wt.	04/27/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
Methylene chloride	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
2-Methylnapthalene	4,580	250	μg/Kg, dry wt.	04/27/22	BD	
Naphthalene	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
n-Propylbenzene	178	100	μg/Kg, dry wt.	04/27/22	BD	
Styrene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Tetrachloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Tetrahydrofuran	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD	
Toluene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,2,3-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
1,2,4-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/27/22	BD	
1,1,1-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
1,1,2-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Trichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/27/22	BD	
Trichlorofluoromethane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,2,3-Trichloropropane	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,2,4-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
1,3,5-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Vinyl Acetate	Not Detected	5,000	μg/Kg, dry wt.	04/27/22	BD	
Vinyl Chloride	Not Detected	40	μg/Kg, dry wt.	04/27/22	BD	
Xylene (Total)	Not Detected	150	μg/Kg, dry wt.	04/27/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	89.9%	-	% Recovery	04/27/22	BD	
Toluene-d8	103%	-	% Recovery	04/27/22	BD	
4-Bromofluorobenzene	114%	-	% Recovery	04/27/22	BD	
continued						

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 68 of 83

Sample Description:	Dup, 0000, 4	/19/22				
Laboratory ID:	12245-14	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Semi-Volatile Organic Cmpds						
Acenaphthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Acenaphthylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Aniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Azobenzene	Not Detected	200	μg/Kg, dry wt.	04/27/22	BD	
Benzidine	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD	
Benzo(a)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Benzo(b)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Benzo(k)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Benzo(g,h,i)perylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Benzo(a)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Benzyl alcohol	Not Detected	3,300	μg/Kg, dry wt.	04/27/22	BD	
Bis(2-chloroethyl)ether	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bis(2-chloroisopropyl)ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Bis(2-chloroethoxy)methane	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Bis(2-ethylhexyl)phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Bromophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Butyl benzyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Carbazole	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Chloroaniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Chloro-3-methylphenol	Not Detected	280	μg/Kg, dry wt.	04/27/22	BD	
2-Chloronaphthalene (beta)	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Chlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Chlorophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Chrysene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Di-n-butylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Di-n-octyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Dibenzo(a,h)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Dibenzofuran	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
3,3'-Dichlorobenzidine	Not Detected	2,000	μg/Kg, dry wt.	04/27/22	BD	
2,4-Dichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Diethylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Dimethyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,4-Dimethylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,4-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
2,4-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,6-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
continued						

- Internal Standard results outside of acceptance limits
- QC spike recovery outside of acceptance limits RPD outside of acceptance limits

- Reporting limit is elevated Result is from a dilution Result should be considered estimated D J
- Matrix interference observed
- Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page:

12245 May 2, 2022 Ann Arbor Housing 188EM22001 69 of 83

Sample Description:	Dup, 0000, 4	/19/22				
Laboratory ID:	12245-14	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
SVOC's, Cont'd						
Fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Fluorene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Hexachlorobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Hexachlorocyclopentadiene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Hexachloroethane	Not Detected	300	μg/Kg, dry wt.	04/27/22	BD	
Indeno(1,2,3-cd)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Isophorone	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Methyl-4,6-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
2-Methylnaphthalene	793	330	μg/Kg, dry wt.	04/27/22	BD	
2-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Methylphenols (total)	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD	
Naphthalene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
3-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
4-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
Nitrobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Nitrophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Nitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
N-Nitrosodi-n-propylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
N-Nitrosodiphenylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Pentachlorophenol	Not Detected	20	μg/Kg, dry wt.	04/27/22	BD	
Phenanthrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Phenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Pyridine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,4,5-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,4,6-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Surrogate Standards						
2-Fluorophenol	58.5%	-	% Recovery	04/27/22	BD	
Phenol-d5	63.0%	-	% Recovery	04/27/22	BD	
Nitrobenzene-d5	53.5%	-	% Recovery	04/27/22	BD	
2-Fluorobiphenyl	63.3%	-	% Recovery	04/27/22	BD	
2,4,6-Tribromophenol	77.6%	-	% Recovery	04/27/22	BD	
Terphenyl-d14	75.7%	-	% Recovery	04/27/22	BD	
continued			-			

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 70 of 83

Sample Description:	Dup, 0000, 4	/19/22				
Laboratory ID:	12245-14	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Total Petroleum Hydrocarbons						
GRO (C ₆ -C ₁₀)	634,000	100,000	μg/Kg, dry wt.	04/26/22	BD	E, D
DRO (C ₁₀ -C ₂₈)	1,410,000	20,000	μg/Kg, dry wt.	04/26/22	DS	E, C
ORO (C ₂₈ -C ₃₄)	1,110,000	20,000	μg/Kg, dry wt.	04/29/22	DS	
Analysis Information						
Dry Weight Solids	89.7%	-	% by weight	04/22/22	LB	
SVOC Extraction	Completed	-	-	04/22/22	LB	
TPH-DRO/ ORO Extraction	Completed	-	-	04/24/22	LB	

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 71 of 83

Sample Description:	ST Sewer Se	ediment, 1205	5, 4/19/22			
Laboratory ID:	12245-15	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	1,000	μg/Kg, dry wt.	04/26/22	BD	
Benzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Bromobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Bromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Bromodichloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Bromoform	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Bromomethane	Not Detected	200	μg/Kg, dry wt.	04/26/22	BD	
2-Butanone (MEK)	Not Detected	750	μg/Kg, dry wt.	04/26/22	BD	
n-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
sec-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
tert-Butylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Carbon disulfide	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Carbon tetrachloride	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Chlorobenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Chloroethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Chloroform	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Chloromethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
2-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
4-Chlorotoluene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Dibromochloromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	10	μg/Kg, dry wt.	04/26/22	BD	
Dibromomethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,2-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,3-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,4-Dichlorobenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Dichlorodifluoromethane	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,1-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,2-Dichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
cis-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
trans-1,2-Dichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,3-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
2,2-Dichloropropane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,3-Dichloropropene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
continued						

QC spike recovery outside of acceptance limits RPD outside of acceptance limits

Matrix Spike four times rule applied See Case Narrative

Internal Standard results outside of acceptance limits

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix interference observed

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 72 of 83

Sample Description:	ST Sewer Se	ediment, 1205	5, 4/19/22			
Laboratory ID:	12245-15	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	20	μg/Kg, dry wt.	04/26/22	BD	
Hexachlorobutadiene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
2-Hexanone	Not Detected	2,500	μg/Kg, dry wt.	04/26/22	BD	
Isopropyl benzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	2,500	μg/Kg, dry wt.	04/26/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Methylene chloride	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
2-Methylnapthalene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
Naphthalene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
n-Propylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Styrene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Tetrachloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Tetrahydrofuran	Not Detected	1,000	μg/Kg, dry wt.	04/26/22	BD	
Toluene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,3-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,2,4-Trichlorobenzene	Not Detected	250	μg/Kg, dry wt.	04/26/22	BD	
1,1,1-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
1,1,2-Trichloroethane	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Trichloroethylene	Not Detected	50	μg/Kg, dry wt.	04/26/22	BD	
Trichlorofluoromethane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,3-Trichloropropane	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,2,4-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
1,3,5-Trimethylbenzene	Not Detected	100	μg/Kg, dry wt.	04/26/22	BD	
Vinyl Acetate	Not Detected	5,000	μg/Kg, dry wt.	04/26/22	BD	
Vinyl Chloride	Not Detected	40	μg/Kg, dry wt.	04/26/22	BD	
Xylene (Total)	Not Detected	150	μg/Kg, dry wt.	04/26/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	97.1%	-	% Recovery	04/26/22	BD	
Toluene-d8	107%	-	% Recovery	04/26/22	BD	
4-Bromofluorobenzene	101%	-	% Recovery	04/26/22	BD	
continued						

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 73 of 83

Sample Description:	ST Sewer Se	ediment, 120	5, 4/19/22			
Laboratory ID:	12245-15	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Semi-Volatile Organic Cmpds						
Acenaphthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Acenaphthylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Aniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Azobenzene	Not Detected	200	μg/Kg, dry wt.	04/27/22	BD	
Benzidine	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD	
Benzo(a)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Benzo(b)fluoranthene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Benzo(k)fluoranthene	346	330	μg/Kg, dry wt.	04/27/22	BD	
Benzo(g,h,i)perylene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Benzo(a)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Benzyl alcohol	Not Detected	3,300	μg/Kg, dry wt.	04/27/22	BD	
Bis(2-chloroethyl)ether	Not Detected	100	μg/Kg, dry wt.	04/27/22	BD	
Bis(2-chloroisopropyl)ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Bis(2-chloroethoxy)methane	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Bis(2-ethylhexyl)phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Bromophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Butyl benzyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Carbazole	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Chloroaniline	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Chloro-3-methylphenol	Not Detected	280	μg/Kg, dry wt.	04/27/22	BD	
2-Chloronaphthalene (beta)	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Chlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Chlorophenyl phenyl ether	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Chrysene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Di-n-butylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Di-n-octyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Dibenzo(a,h)anthracene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Dibenzofuran	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
3,3'-Dichlorobenzidine	Not Detected	2,000	μg/Kg, dry wt.	04/27/22	BD	
2,4-Dichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Diethylphthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Dimethyl phthalate	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,4-Dimethylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,4-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
2,4-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,6-Dinitrotoluene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
continued						

- Internal Standard results outside of acceptance limits
- QC spike recovery outside of acceptance limits RPD outside of acceptance limits
- E D J
- Reporting limit is elevated Result is from a dilution Result should be considered estimated
- Matrix interference observed
- Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 74 of 83

Sample Description:	ST Sewer Se	ediment, 1205	5, 4/19/22			
Laboratory ID:	12245-15	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
SVOC's, Cont'd						
Fluoranthene	349	330	μg/Kg, dry wt.	04/27/22	BD	
Fluorene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Hexachlorobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Hexachlorocyclopentadiene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Hexachloroethane	Not Detected	300	μg/Kg, dry wt.	04/27/22	BD	
Indeno(1,2,3-cd)pyrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Isophorone	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Methyl-4,6-Dinitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
2-Methylnaphthalene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Methylphenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Methylphenols (total)	Not Detected	1,000	μg/Kg, dry wt.	04/27/22	BD	
Naphthalene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
3-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
4-Nitroaniline	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
Nitrobenzene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2-Nitrophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
4-Nitrophenol	Not Detected	830	μg/Kg, dry wt.	04/27/22	BD	
N-Nitrosodi-n-propylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
N-Nitrosodiphenylamine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Pentachlorophenol	Not Detected	20	μg/Kg, dry wt.	04/27/22	BD	
Phenanthrene	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Phenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Pyrene	378	330	μg/Kg, dry wt.	04/27/22	BD	
Pyridine	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,4,5-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
2,4,6-Trichlorophenol	Not Detected	330	μg/Kg, dry wt.	04/27/22	BD	
Surrogate Standards						
2-Fluorophenol	93.8%	-	% Recovery	04/27/22	BD	
Phenol-d5	93.8%	-	% Recovery	04/27/22	BD	
Nitrobenzene-d5	87.4%	-	% Recovery	04/27/22	BD	
2-Fluorobiphenyl	90.2%	-	% Recovery	04/27/22	BD	
2,4,6-Tribromophenol	106%	-	% Recovery	04/27/22	BD	
Terphenyl-d14	98.6%	-	% Recovery	04/27/22	BD	
continued						

QC spike recovery outside of acceptance limits RPD outside of acceptance limits

Matrix Spike four times rule applied See Case Narrative

Internal Standard results outside of acceptance limits

Reporting limit is elevated Result is from a dilution Result should be considered estimated D J

Matrix interference observed

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 75 of 83

Sample Description:	ST Sewer Se	diment, 1205	5, 4/19/22			
Laboratory ID:	12245-15	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Michigan Metals						
Arsenic	1,750	100	μg/Kg, dry wt.	04/26/22	DS	
Barium	149,000	1,000	μg/Kg, dry wt.	04/26/22	DS	
Cadmium	Not Detected	200	μg/Kg, dry wt.	04/26/22	DS	
Chromium	5,700	2,000	μg/Kg, dry wt.	04/26/22	DS	
Copper	8,240	1,000	μg/Kg, dry wt.	04/26/22	DS	
Lead	2,990	1,000	μg/Kg, dry wt.	04/26/22	DS	
Mercury	Not Detected	50	μg/Kg, dry wt.	04/27/22	DS	
Selenium	Not Detected	200	μg/Kg, dry wt.	04/26/22	DS	
Silver	Not Detected	100	μg/Kg, dry wt.	04/26/22	DS	
Zinc	64,000	1,000	μg/Kg, dry wt.	04/26/22	DS	
Total Petroleum Hydrocarbons						
GRO (C ₆ -C ₁₀)	Not Detected	10,000	μg/Kg, dry wt.	04/26/22	BD	
DRO (C ₁₀ -C ₂₈)	36,500	20,000	μg/Kg, dry wt.	04/26/22	DS	E, C
ORO (C ₂₈ -C ₃₄)	236,000	20,000	μg/Kg, dry wt.	04/29/22	DS	
Analysis Information						
Dry Weight Solids	89.7%	-	% by weight	04/22/22	LB	
SVOC Extraction	Completed	-	-	04/22/22	LB	
TPH-DRO/ ORO Extraction	Completed	-	-	04/24/22	LB	
Mercury Digestion	Completed	-	-	04/26/22	LB	
Metals Digestion	Completed	-	-	04/26/22	LB	

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 76 of 83

Sample Description:	Trip Blank					
Laboratory ID:	12245-16	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
Volatile Organic Compounds						
Acetone	Not Detected	50	μg/L	04/26/22	BD	
Benzene	Not Detected	1	μg/L	04/26/22	BD	
Bromobenzene	Not Detected	1	μg/L	04/26/22	BD	
Bromochloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromodichloromethane	Not Detected	1	μg/L	04/26/22	BD	
Bromoform	Not Detected	1	μg/L	04/26/22	BD	
Bromomethane	Not Detected	5	μg/L	04/26/22	BD	
2-Butanone (MEK)	Not Detected	25	μg/L	04/26/22	BD	
n-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
sec-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
tert-Butylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Carbon disulfide	Not Detected	5	μg/L	04/26/22	BD	
Carbon tetrachloride	Not Detected	1	μg/L	04/26/22	BD	
Chlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Chloroethane	Not Detected	5	μg/L	04/26/22	BD	
Chloroform	Not Detected	1	μg/L	04/26/22	BD	
Chloromethane	Not Detected	5	μg/L	04/26/22	BD	
2-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
4-Chlorotoluene	Not Detected	5	μg/L	04/26/22	BD	
Dibromochloromethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dibromo-3-chloropropane	Not Detected	0.2	μg/L	04/26/22	BD	
Dibromomethane	Not Detected	5	μg/L	04/26/22	BD	
1,2-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
1,4-Dichlorobenzene	Not Detected	1	μg/L	04/26/22	BD	
Dichlorodifluoromethane	Not Detected	5	μg/L	04/26/22	BD	
1,1-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
cis-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
trans-1,2-Dichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
1,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
2,2-Dichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,1-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
1,3-Dichloropropene	Not Detected	1	μg/L	04/26/22	BD	
continued						

Internal Standard results outside of acceptance limits

QC spike recovery outside of acceptance limits RPD outside of acceptance limits

D J

Reporting limit is elevated Result is from a dilution Result should be considered estimated

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Report Date: Project Name: Project Number: Page: 12245 May 2, 2022 Ann Arbor Housing 188EM22001 77 of 83

Sample Description:	Trip Blank					
Laboratory ID:	12245-16	Reporting Limit	Units of Measure	Date of Analysis	Analyst	Data Qualifiers
VOC's, Cont'd						
Ethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Ethylene Dibromide (1,2-Dibromoethane)	Not Detected	0.2	μg/L	04/26/22	BD	
Hexachlorobutadiene	Not Detected	0.2	μg/L	04/26/22	BD	
2-Hexanone	Not Detected	50	μg/L	04/26/22	BD	
Isopropyl benzene	Not Detected	5	μg/L	04/26/22	BD	
4-Methyl-2-pentanone (MIBK)	Not Detected	50	μg/L	04/26/22	BD	
Methyl-t-butyl ether (MTBE)	Not Detected	5	μg/L	04/26/22	BD	
Methylene chloride	Not Detected	5	μg/L	04/26/22	BD	
2-Methylnapthalene	Not Detected	5	μg/L	04/26/22	BD	
Naphthalene	Not Detected	5	μg/L	04/26/22	BD	
n-Propyl benzene	Not Detected	1	μg/L	04/26/22	BD	
Styrene	Not Detected	1	μg/L	04/26/22	BD	
1,1,1,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2,2-Tetrachloroethane	Not Detected	1	μg/L	04/26/22	BD	
Tetrachloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Tetrahydrofuran	Not Detected	90	μg/L	04/26/22	BD	
Toluene	Not Detected	1	μg/L	04/26/22	BD	
1,2,3-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,2,4-Trichlorobenzene	Not Detected	5	μg/L	04/26/22	BD	
1,1,1-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
1,1,2-Trichloroethane	Not Detected	1	μg/L	04/26/22	BD	
Trichloroethylene	Not Detected	1	μg/L	04/26/22	BD	
Trichlorofluoromethane	Not Detected	1	μg/L	04/26/22	BD	
1,2,3-Trichloropropane	Not Detected	1	μg/L	04/26/22	BD	
1,2,4-Trimethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
1,3,5-Trimethylbenzene	Not Detected	1	μg/L	04/26/22	BD	
Vinyl Acetate	Not Detected	100	μg/L	04/26/22	BD	
Vinyl chloride	Not Detected	1	μg/L	04/26/22	BD	
Xylene (Total)	Not Detected	3	μg/L	04/26/22	BD	
Surrogate Standards						
1,2-Dichloroethane-d4	96.5%	-	% Recovery	04/26/22	BD	
Toluene-d8	103%	-	% Recovery	04/26/22	BD	
4-Bromofluorobenzene	101%	-	% Recovery	04/26/22	BD	

Matrix Spike four times rule applied See Case Narrative

Report Number: Report Date:

Project Name: Project Number: Page:

12245 May 2, 2022 Ann Arbor Housing 188EM22001 78 of 83

Quality Control

VOC Matrix Spike Data

Spiked Sample: 12245-8		Matrix: Soil		Units: ppl	o in extract			
	Sample	Spike	Spike MS		MSD MS			Data
Parameter	Result	Added	Result	Result	% Rec.	% Rec.	RPD	Qualifiers
1,1-Dichloroethene	0.0	25	30	26	120	104	14.3	
Benzene	0.0	25	24	25	96	100	4.1	
Trichloroethene	0.0	25	22	24	88	96	8.7	
Toluene	0.0	25	22	22	88	88	0.0	
Chlorobenzene	0.0	25	21	23	84	92	9.1	

Spiked Sample: 12250 LCS Ma		Matrix: Wa	Matrix: Water		Units: ppb in solution			
	Sample	Spike	Spike MS		MSD MS			Data
Parameter	Result	Added	Result	Result	% Rec.	% Rec.	RPD	Qualifiers
1,1-Dichloroethene	0.0	25	26	24	104	96	8.0	
Benzene	0.0	25	26	28	104	112	7.4	
Trichloroethene	0.0	25	25	26	100	104	3.9	
Toluene	0.0	25	23	25	92	100	8.3	
Chlorobenzene	0.0	25	23	25	92	100	8.3	

SVOC Matrix Spike Data

Spiked Sample: 12245-8		Matrix: So	il	Units: ppm in extract				
	Sample	Spike	MS	MSD	MS	MSD		Data
Parameter	Result	Added	Result	Result	% Rec.	% Rec.	RPD	Qualifiers
2-Chlorophenol	0.0	100	77	82	77	82	6.3	
1,4-Dichlorobenzene	0.0	50	32	33	64	66	3.1	
1,2,4-Trichlorobenzene	0.0	50	31	31	62	62	0.0	
4-Chloro-3-methylphenol	0.0	100	86	89	86	89	3.4	
Acenaphthene	0.0	50	35	36	70	72	2.8	
Pentachlorophenol	0.0	100	90	92	90	92	2.2	

Spiked Sample: 12245 LCS		Matrix: Water		Units: ppm in extract		t		
	Sample	Spike	MS	MSD	MS	MSD		Data
Parameter	Result	Added	Result	Result	% Rec.	% Rec.	RPD	Qualifiers
2-Chlorophenol	0.0	100	38	45	38	45	16.9	
1,4-Dichlorobenzene	0.0	50	16	20	32	40	22.2	
1,2,4-Trichlorobenzene	0.0	50	14	17	28	34	19.4	
4-Chloro-3-methylphenol	0.0	100	46	54	46	54	16.0	
Acenaphthene	0.0	50	18	21	36	42	15.4	
Pentachlorophenol	0.0	100	44	49	44	49	10.8	

Matrix Spike four times rule applied See Case Narrative

Report Number: Report Date:

Project Name: Project Number: Page:

12245 May 2, 2022 Ann Arbor Housing 188EM22001 79 of 83

Quality Control, Cont'd

TPH-DRO / GRO / ORO Matrix Spike Data

Spiked Sample: 122	ed Sample: 12245-9 Matrix:		ix: Soil	Units: pp	b in extract			
	Sample	Spike	MS	MSD	MS	MSD		Data
Parameter	Result	Added	Result	Result	% Rec.	% Rec.	RPD	Qualifiers
GRO (C ₆ -C ₁₀)	0	1000	1100	1170	110	117	6.2	

		ix: Water	Units: pp	b in extract				
	Sample	Spike	MS	MSD	MS	MSD		Data
Parameter	Result	Added	Result	Result	% Rec.	% Rec.	RPD	Qualifiers
GRO (C ₆ -C ₁₀)	0	1000	820	980	82	98	17.8	

Spiked Sample: 122	45-8 (1224	3-7 for DRO)	Mat	in extract			
Sample Spike MS					MS	MSD		Data
Parameter	Result	Added	Result	Result	% Rec.	% Rec.	RPD	Qualifiers
DRO (C ₁₀ -C ₂₈)	95	1000	784	708	69	61	10.2	
ORO (C ₂₈ -C ₃₄)	0	1000	930	874	93	87	6.2	

Spiked Sample: 122	45 LCS	Matr	ix: Water	Units: pp	b in extract			
	Sample	Spike	MS	MSD	MS	MSD		Data
Parameter	Result	Added	Result	Result	% Rec.	% Rec.	RPD	Qualifiers
DRO (C ₁₀ -C ₂₈)	0	1000	776	877	78	88	12.2	
ORO (C ₂₈ -C ₃₄)	82	1000	945	974	86	89	3.0	

Report Number: Report Date: Project Name:

Project Number: Page:

12245 May 2, 2022 Ann Arbor Housing 188EM22001 80 of 83

Quality Control, Cont'd

Metals Matrix Spike Data

Spiked Sample: 1	2245-8 (LCS f	or Ba, 12249	9-7 for Hg)		Matrix: So	il	Units: pp	ob in solution
	Sample	Spike	MS	MSD	MS	MSD		Data
Parameter	Result	Added	Result	Result	% Rec.	% Rec.	RPD	Qualifiers
Arsenic	3.1	12.5	14.6	15.6	92	100	6.7	
Barium	0	100	105	104	105	104	1.0	
Cadmium	0.5	1.3	1.5	1.5	86	82	3.1	
Chromium	9.0	10	23.0	24.6	141	157	6.8	
Copper	15.3	25	36.3	40.6	84	101	11.2	
Lead	10.3	25	30.6	28.7	81	74	6.4	
Mercury	0.0	5.0	5.0	5.1	99	101	2.0	
Selenium	0.0	25	6.9	6.8	28	27	1.7	
Silver	0.0	5.0	3.9	4.1	79	81	3.0	
Zinc	53	500	487	505	87	90	3.6	

Spiked Sample: 1	2245-1 (LCS f	or Hg)			Matrix: Wa	ater	Units: p	ob in solution
	Sample	Spike	MS	MSD	MS	MSD		Data
Parameter	Result	Added	Result	Result	% Rec.	% Rec.	RPD	Qualifiers
Arsenic	2.2	12.5	12.9	13.9	85	94	7.9	
Barium	440	100	487	462	NC	NC	5.3	
Cadmium	0.0	1.3	0.7	0.7	59	57	2.7	S, M
Chromium	0.0	10	10.9	11.1	109	111	1.9	
Copper	4.8	25	28.3	36.6	94	127	25.6	
Lead	0.0	25	15.8	17.8	63	71	11.9	
Mercury	0.0	5.0	5.3	5.2	105	104	0.8	
Selenium	0.0	25	8.2	1.6	33	6	135	R, M
Silver	0.0	5.0	2.0	2.1	41	41	1.5	
Zinc	0	500	104	146	21	29	33.6	S, R, M

Case Narrative

Samples 12245-1 and 6 were filtered with a 0.45µm filter prior to digestion and analysis of metals per client's request.

The reporting limit for TPH-DRO on samples 12245-8, 9, 10, 11, 12, 14 and 15 were elevated due to the presence of the analyte in the associated method blank.

All method protocols and quality control requirements were satisfied for all samples.

See Case Narrative

Report Number: Report Date: Project Name: Project Number:

Page:

12245May 2, 2022
Ann Arbor Housing 188EM22001
81 of 83

Notes

- (1) Quality Control Limits available upon request.
- (2) Results are applicable only to the sample tested.
- (3) All samples will be discarded after 30 days unless the laboratory receives other instructions.
- (4) Chain of Custody document attached.

QUANTUM LABORATORIES, INC.

David W. Starr

Analytical Chemistry Manager

Report Date: Project Name: Project Number: Page:

12245

SAMPLE RECEIVED

Hold MI-10 Hold MI-10 May 2, 2022 Ann Arbor Housing 188EM22001 82 of 83

> Blue Ice 8 □ Wet I

> > Pink - Sampler

Yellow - Client Report

White - Lab Copy

Distribution:

QUANTUM LABORATORIES, INC.

248-348-TEST or 248-348-8378 28221 Beck Road 1 Suite A-11 Wixom, MI 48393

Cert. No. 2005111505

O By Date O Rush EM2200 Standard 2020 SAMPLES COLLECTED BY SPECIAL INSTRUCTIONS (LAB USE) SAMPLING LOCATION TURN AROUND TIME PROJECT NUMBER PROJECT NAME P.O. NUMBER REPORT NO. PROJECT INFO

Women's Business Enterprise

RECORD

ANALYSIS REQUESTED	13
	COMP **
	• 34YT 3
rinking Water, O=Oil/Organic, M=Mixed, V=Vapor, A=Air mposite Sample	NERS R OF

S.

D=Drinking Water, O=Oil/Organic, M=Mixed, V=Vapor, A=Air

G=Grab Sample, C=Co U=Unknown or Other S=Soil, W-Water,

GRAB/COMP:

greve Sonrad

ADDITIONAL PHONE

CONTACT

FAX

CLIENT INFO

EMAIL ADDRESS

SAMPLE TYPE:

GRAB / C 0 SAMPLE DATE 5 TIME 0000 7071 CONTAIN

RESERVATIVES

Hold MI-10

Hold MI-10 Hold MI-10

> PTED BY पीधा TIME / DATE RELINQUISHED BY

Lantum Laboratories, Inc.

STODY

HAIN

COMPANY

Data Qualifiers:

Internal Standard results outside of acceptance limits

QC spike recovery outside of acceptance limits RPD outside of acceptance limits

ZIP

CITY, STATE, TELEPHONE

Reporting limit is elevated

BSU BAL

LINE NO.

SAMPLE IDENTIFICATION

١

Result is from a dilution
Result should be considered estimated D

2

3 4 2 9

Matrix interference observed

XFER

N 0

TWW

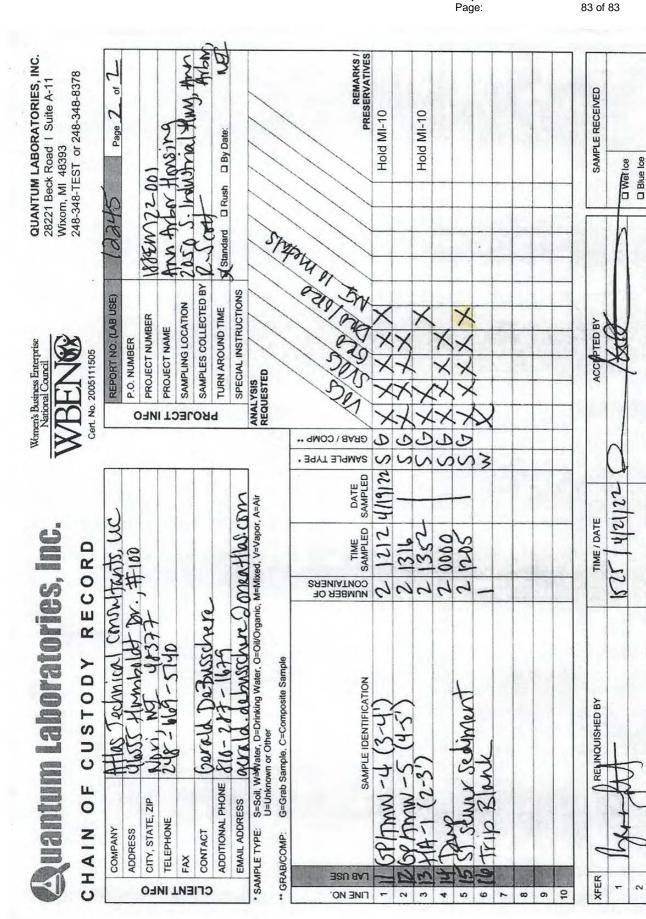
Matrix Spike four times rule applied See Case Narrative

6

8

Report Date: Project Name: Project Number: 12245

May 2, 2022 Ann Arbor Housing 188EM22001 83 of 83


Pink - Sampler

Yellow - Client Report

White - Lab Copy

Distribution:

n

Data Qualifiers:

Internal Standard results outside of acceptance limits

QC spike recovery outside of acceptance limits RPD outside of acceptance limits

Reporting limit is elevated

Result is from a dilution
Result should be considered estimated D

Matrix interference observed

Matrix Spike four times rule applied See Case Narrative

Pace Analytical Services, LLC 1700 Elm Street Minneapolis, MN 55414 (612)607-1700

May 27, 2022

Gerard Debusschere Atlas 46555 Humboldt Dr. Novi, MI 48377

RE: Project: City of Ann Arbor

Pace Project No.: 10606801

Dear Gerard Debusschere:

Enclosed are the analytical results for sample(s) received by the laboratory on May 03, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carolynne That

Carolynne Trout carolynne.trout@pacelabs.com 1(612)607-6351 Project Manager

Enclosures

CERTIFICATIONS

Project: City of Ann Arbor Pace Project No.: 10606801

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414

1800 Elm Street SE, Minneapolis, MN 55414--Satellite Air

Lab

A2LA Certification #: 2926.01* Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009*

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014* Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256

EPA Region 8 Tribal Water Systems+Wyoming DW

Certification #: via MN 027-053-137 Florida Certification #: E87605* Georgia Certification #: 959 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062

Kansas Certification #. E-10167
Kentucky DW Certification #: 90062
Kentucky WW Certification #: 90062
Louisiana DEQ Certification #: MN00064
Louisiana DW Certification #: MN00064
Maine Certification #: MN00064*
Maryland Certification #: 322

Michigan Certification #: 9909

Minnesota Certification #: 027-053-137*

Minnesota Dept of Ag Approval: via MN 027-053-137

Minnesota Petrofund Registration #: 1240* Mississippi Certification #: MN00064 Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064

New Hampshire Certification #: 2081* New Jersey Certification #: MN002 New York Certification #: 11647*

North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification (A2LA) #: R-036 North Dakota Certification (MN) #: R-036

Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Ohio VAP Certification (1800) #: CL110*

Oklahoma Certification #: 9507*
Oregon Primary Certification #: MN300001

Oregon Primary Certification #: MN300001
Oregon Secondary Certification #: MN200001*
Pennsylvania Certification #: 68-00563*
Puerto Rico Certification #: MN00064
South Carolina Certification #: TN02818
Texas Certification #: T104704192*
Utah Certification #: MN00064*
Vermont Certification #: VT-027053137
Virginia Certification #: 460163*
Washington Certification #: C486*

Washington Certification #: C486* West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970

Wyoming UST Certification #: via A2LA 2926.01

USDA Permit #: P330-19-00208

*Please Note: Applicable air certifications are denoted with

an asterisk (*).

SAMPLE SUMMARY

Project: City of Ann Arbor

Pace Project No.: 10606801

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10606801001	SG-1	Air	04/29/22 10:06	05/03/22 12:12
10606801002	SG-2	Air	04/29/22 10:30	05/03/22 12:12
10606801003	SG-3	Air	04/29/22 09:44	05/03/22 12:12
10606801004	SG-4	Air	04/29/22 10:47	05/03/22 12:12
10606801005	SG-5	Air	04/29/22 11:09	05/03/22 12:12
10606801006	SG-6	Air	04/29/22 11:49	05/03/22 12:12

SAMPLE ANALYTE COUNT

Project: City of Ann Arbor

Pace Project No.: 10606801

Lab ID	Sample ID	Method	Analysts	Analytes Reported
10606801001	SG-1	TO-15	НМН	62
10606801002	SG-2	TO-15	НМН	62
10606801003	SG-3	TO-15	НМН	62
10606801004	SG-4	TO-15	НМН	62
10606801005	SG-5	TO-15	HMH	62
10606801006	SG-6	TO-15	НМН	62

PASI-M = Pace Analytical Services - Minneapolis

PROJECT NARRATIVE

Project: City of Ann Arbor

Pace Project No.: 10606801

Method: TO-15

Description: TO15 MSV AIR **Client:** One Atlas MI Air **Date:** May 27, 2022

General Information:

6 samples were analyzed for TO-15 by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 817109

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- SG-1 (Lab ID: 10606801001)
 - Ethanol
 - Acetone
- SG-2 (Lab ID: 10606801002)
 - Dichlorodifluoromethane
- SG-4 (Lab ID: 10606801004)
 - Acetone

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: City of Ann Arbor

Sample: SG-1	Lab ID: 106	06801001	Collected: 04/29/2	22 10:06	Received:	05/03/22 12:12	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Metl	nod: TO-15						
	Pace Analytica	al Services -	Minneapolis					
Acetone	323	ug/m3	11.3	1.87		05/26/22 00:27	67-64-1	Е
Benzene	1.8	ug/m3	0.61	1.87		05/26/22 00:27	71-43-2	
Benzyl chloride	ND	ug/m3	4.9	1.87		05/26/22 00:27	100-44-7	
Bromodichloromethane	ND	ug/m3	2.5	1.87		05/26/22 00:27	75-27-4	
Bromoform	ND	ug/m3	9.8	1.87		05/26/22 00:27	75-25-2	
Bromomethane	ND	ug/m3	1.5	1.87		05/26/22 00:27	74-83-9	
1,3-Butadiene	ND	ug/m3	2.1	1.87		05/26/22 00:27		
2-Butanone (MEK)	20.3	ug/m3	5.6	1.87		05/26/22 00:27		
Carbon disulfide	ND	ug/m3	1.2	1.87		05/26/22 00:27		
Carbon tetrachloride	ND	ug/m3	2.4	1.87		05/26/22 00:27		
Chlorobenzene	ND ND	ug/m3	1.8	1.87		05/26/22 00:27		
Chloroethane	ND ND	-	2.5	1.87		05/26/22 00:27		
		ug/m3						
Chloroform	7.6	ug/m3	0.93	1.87		05/26/22 00:27		
Chloromethane	ND	ug/m3	0.79	1.87		05/26/22 00:27		
Cyclohexane	4.6	ug/m3	3.3	1.87		05/26/22 00:27		
Dibromochloromethane	ND	ug/m3	3.2	1.87		05/26/22 00:27	_	
,2-Dibromoethane (EDB)	ND	ug/m3	1.5	1.87		05/26/22 00:27		
,2-Dichlorobenzene	ND	ug/m3	5.7	1.87		05/26/22 00:27		
,3-Dichlorobenzene	ND	ug/m3	5.7	1.87		05/26/22 00:27	7 541-73-1	
,4-Dichlorobenzene	ND	ug/m3	5.7	1.87		05/26/22 00:27	106-46-7	
Dichlorodifluoromethane	62.0	ug/m3	1.9	1.87		05/26/22 00:27	75-71-8	
,1-Dichloroethane	ND	ug/m3	1.5	1.87		05/26/22 00:27	75-34-3	
,2-Dichloroethane	ND	ug/m3	1.5	1.87		05/26/22 00:27	107-06-2	
1,1-Dichloroethene	ND	ug/m3	1.5	1.87		05/26/22 00:27	75-35-4	
cis-1,2-Dichloroethene	ND	ug/m3	1.5	1.87		05/26/22 00:27	7 156-59-2	
rans-1,2-Dichloroethene	ND	ug/m3	1.5	1.87		05/26/22 00:27	156-60-5	
1,2-Dichloropropane	ND	ug/m3	1.8	1.87		05/26/22 00:27		
cis-1,3-Dichloropropene	ND	ug/m3	4.3	1.87		05/26/22 00:27	10061-01-5	
rans-1,3-Dichloropropene	ND	ug/m3	4.3	1.87		05/26/22 00:27		
Dichlorotetrafluoroethane	ND	ug/m3	2.7	1.87		05/26/22 00:27		
Ethanol	301	ug/m3	3.6	1.87		05/26/22 00:27		Е
Ethyl acetate	ND	ug/m3	1.4	1.87		05/26/22 00:27	-	_
Ethylbenzene	7.7	ug/m3	1.7	1.87		05/26/22 00:27		
•	8.0	-	4.7	1.87		05/26/22 00:27		
4-Ethyltoluene		ug/m3						
n-Heptane	5.5	ug/m3	3.9	1.87		05/26/22 00:27		
Hexachloro-1,3-butadiene	ND	ug/m3	10.1	1.87		05/26/22 00:27		
n-Hexane	4.6	ug/m3	1.3	1.87		05/26/22 00:27		
2-Hexanone	ND	ug/m3	7.8	1.87		05/26/22 00:27		
Methylene Chloride	ND	ug/m3	6.6	1.87		05/26/22 00:27		
I-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.8	1.87		05/26/22 00:27		
Methyl-tert-butyl ether	ND	ug/m3	6.8	1.87		05/26/22 00:27		
Naphthalene	ND	ug/m3	5.0	1.87		05/26/22 00:27	91-20-3	
2-Propanol	ND	ug/m3	4.7	1.87		05/26/22 00:27	7 67-63-0	
Propylene	ND	ug/m3	1.6	1.87		05/26/22 00:27	115-07-1	
Styrene	2.3	ug/m3	1.6	1.87		05/26/22 00:27	7 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/m3	2.6	1.87		05/26/22 00:27		

ANALYTICAL RESULTS

Project: City of Ann Arbor Pace Project No.: 10606801

Sample: SG-1	Lab ID: 106	06801001	Collected: 04/29/2	22 10:06	Received: 0	5/03/22 12:12 N	latrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Met	nod: TO-15						
	Pace Analytica	l Services -	Minneapolis					
Tetrachloroethene	3.8	ug/m3	1.3	1.87		05/26/22 00:27	127-18-4	
Tetrahydrofuran	ND	ug/m3	2.8	1.87		05/26/22 00:27	109-99-9	
Toluene	36.1	ug/m3	3.6	1.87		05/26/22 00:27	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	14.1	1.87		05/26/22 00:27	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	2.1	1.87		05/26/22 00:27	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	1.0	1.87		05/26/22 00:27		
Trichloroethene	ND	ug/m3	1.0	1.87		05/26/22 00:27		
Trichlorofluoromethane	ND	ug/m3	5.3	1.87		05/26/22 00:27		
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	7.3	1.87		05/26/22 00:27		
1,2,3-Trimethylbenzene	7.9	ug/m3	1.9	1.87		05/26/22 00:27		
1,2,4-Trimethylbenzene	23.2	ug/m3	1.9	1.87		05/26/22 00:27		
1,3,5-Trimethylbenzene	10.2	ug/m3	1.9	1.87		05/26/22 00:27		
Vinyl acetate	ND	ug/m3	1.3	1.87		05/26/22 00:27		
		_				05/26/22 00:27		
Vinyl chloride	ND	ug/m3	0.97	1.87				
m&p-Xylene	28.7	ug/m3	3.3	1.87		05/26/22 00:27		
o-Xylene	12.7	ug/m3	1.7	1.87		05/26/22 00:27	95-47-6	
Sample: SG-2	Lab ID: 106	06801002	Collected: 04/29/2	22 10:30	Received: 0	5/03/22 12:12 N	latrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Met	and: TO 15				_	-	
1013 M3V AIIX	•		Minnoonolio					
	Pace Analytica	ii Services -	wiirineapolis					
Acetone	32.2	ug/m3	11.1	1.83		05/26/22 04:49	67-64-1	
Benzene	ND	ug/m3	0.59	1.83		05/26/22 04:49	71-43-2	
Benzyl chloride	ND	ug/m3	4.8	1.83		05/26/22 04:49	100-44-7	
Bromodichloromethane	ND	ug/m3	2.5	1.83		05/26/22 04:49	75-27-4	
Bromoform	ND	ug/m3	9.6	1.83		05/26/22 04:49	75-25-2	
Bromomethane	ND	ug/m3	1.4	1.83		05/26/22 04:49		
1,3-Butadiene	ND	ug/m3	2.1	1.83		05/26/22 04:49		
2-Butanone (MEK)	ND	ug/m3	5.5	1.83		05/26/22 04:49		
Carbon disulfide	2.2	ug/m3	1.2	1.83		05/26/22 04:49		
Carbon tetrachloride	ND	ug/m3	2.3	1.83		05/26/22 04:49		
Chlorobenzene	ND ND	ug/m3		1.83		05/26/22 04:49		
Chloroethane	ND ND							
		ug/m3	2.5 0.91	1.83 1.83		05/26/22 04:49		
`hlorotorm		114/22		1 0.3		05/26/22 04:49	01-00-3	
	ND	ug/m3				05/26/22 04:40	74 07 2	
Chloromethane	ND	ug/m3	0.77	1.83		05/26/22 04:49		
Chloromethane Cyclohexane	ND 357	ug/m3 ug/m3	0.77 16.0	1.83 9.15		05/26/22 15:21	110-82-7	
Chloromethane Cyclohexane Dibromochloromethane	ND 357 ND	ug/m3 ug/m3 ug/m3	0.77 16.0 3.2	1.83 9.15 1.83		05/26/22 15:21 05/26/22 04:49	110-82-7 124-48-1	
Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB)	ND 357 ND ND	ug/m3 ug/m3 ug/m3 ug/m3	0.77 16.0 3.2 1.4	1.83 9.15 1.83 1.83		05/26/22 15:21 05/26/22 04:49 05/26/22 04:49	110-82-7 124-48-1 106-93-4	
Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ND 357 ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	0.77 16.0 3.2 1.4 5.6	1.83 9.15 1.83 1.83 1.83		05/26/22 15:21 05/26/22 04:49 05/26/22 04:49 05/26/22 04:49	110-82-7 124-48-1 106-93-4 95-50-1	
Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND 357 ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	0.77 16.0 3.2 1.4 5.6 5.6	1.83 9.15 1.83 1.83 1.83 1.83		05/26/22 15:21 05/26/22 04:49 05/26/22 04:49 05/26/22 04:49 05/26/22 04:49	110-82-7 124-48-1 106-93-4 95-50-1 541-73-1	
Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND 357 ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	0.77 16.0 3.2 1.4 5.6	1.83 9.15 1.83 1.83 1.83 1.83		05/26/22 15:21 05/26/22 04:49 05/26/22 04:49 05/26/22 04:49	110-82-7 124-48-1 106-93-4 95-50-1 541-73-1	
Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND 357 ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	0.77 16.0 3.2 1.4 5.6 5.6	1.83 9.15 1.83 1.83 1.83 1.83		05/26/22 15:21 05/26/22 04:49 05/26/22 04:49 05/26/22 04:49 05/26/22 04:49	110-82-7 124-48-1 106-93-4 95-50-1 541-73-1 106-46-7	E

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: City of Ann Arbor
Pace Project No.: 10606801

Sample: SG-2	Lab ID: 10	606801002	Collected: 04/29/2	2 10:30	Received:	05/03/22 12:12	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Me	thod: TO-15						
	Pace Analytic	al Services -	Minneapolis					
1,2-Dichloroethane	ND	ug/m3	1.5	1.83		05/26/22 04:49	9 107-06-2	
1,1-Dichloroethene	ND	ug/m3	1.5	1.83		05/26/22 04:49		
cis-1,2-Dichloroethene	ND	ug/m3	1.5	1.83		05/26/22 04:49		
trans-1,2-Dichloroethene	ND	ug/m3	1.5	1.83		05/26/22 04:49	9 156-60-5	
1,2-Dichloropropane	ND	ug/m3	1.7	1.83		05/26/22 04:49	9 78-87-5	
cis-1,3-Dichloropropene	ND	ug/m3	4.2	1.83		05/26/22 04:49		
trans-1,3-Dichloropropene	ND	ug/m3	4.2	1.83		05/26/22 04:49		
Dichlorotetrafluoroethane	ND	ug/m3	2.6	1.83		05/26/22 04:49		
Ethanol	15.3	ug/m3	3.5	1.83		05/26/22 04:49		
Ethyl acetate	ND	ug/m3	1.3	1.83		05/26/22 04:49		
Ethylbenzene	4.3	ug/m3	1.6	1.83		05/26/22 04:49		
4-Ethyltoluene	ND	ug/m3	4.6	1.83		05/26/22 04:49		
n-Heptane	67.1	ug/m3	3.8	1.83		05/26/22 04:49		
Hexachloro-1,3-butadiene	ND	ug/m3	9.9	1.83		05/26/22 04:49		
n-Hexane	131	ug/m3	1.3	1.83		05/26/22 04:49		
2-Hexanone	ND	ug/m3	7.6	1.83		05/26/22 04:49		
Methylene Chloride	ND	ug/m3	6.5	1.83		05/26/22 04:49		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.6	1.83		05/26/22 04:49		
Methyl-tert-butyl ether	ND	ug/m3	6.7	1.83		05/26/22 04:49		
Naphthalene	ND	ug/m3	4.9	1.83		05/26/22 04:49		
2-Propanol	ND	ug/m3	4.6	1.83		05/26/22 04:49		
Propylene	ND	ug/m3	1.6	1.83		05/26/22 04:49		
Styrene	ND	ug/m3	1.6	1.83		05/26/22 04:49		
1,1,2,2-Tetrachloroethane	ND	ug/m3	2.6	1.83		05/26/22 04:49		
Tetrachloroethene	25.0	ug/m3	1.3	1.83		05/26/22 04:49		
Tetrahydrofuran	ND	ug/m3	2.7	1.83		05/26/22 04:49		
Toluene	27.5	ug/m3	3.5	1.83		05/26/22 04:49		
1,2,4-Trichlorobenzene	ND	ug/m3	13.8	1.83		05/26/22 04:49		
1,1,1-Trichloroethane	ND	ug/m3	2.0	1.83		05/26/22 04:49		
1,1,2-Trichloroethane	ND	ug/m3	1.0	1.83		05/26/22 04:49		
Trichloroethene	ND	ug/m3	1.0	1.83		05/26/22 04:49		
Trichlorofluoromethane	ND	ug/m3	5.2	1.83		05/26/22 04:49		
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	7.1	1.83		05/26/22 04:49		
1,2,3-Trimethylbenzene	2.1	ug/m3	1.8	1.83		05/26/22 04:49		
1,2,4-Trimethylbenzene	4.5	ug/m3	1.8	1.83		05/26/22 04:49		
1,3,5-Trimethylbenzene	2.2	ug/m3	1.8	1.83		05/26/22 04:49		
Vinyl acetate	ND	ug/m3	1.3	1.83		05/26/22 04:49		
Vinyl declate Vinyl chloride	ND ND	ug/m3	0.95	1.83		05/26/22 04:49		
m&p-Xylene	16.3	ug/m3	3.2	1.83			9 179601-23-1	
o-Xylene	6.3	ug/m3	1.6	1.83		05/26/22 04:49		

ANALYTICAL RESULTS

Project: City of Ann Arbor

Sample: SG-3	Lab ID: 106	06801003	Collected: 04/29/2	22 09:44	Received:	05/03/22 12:12	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Metl	hod: TO-15						
	Pace Analytica	al Services -	Minneapolis					
Acetone	83.5	ug/m3	10.7	1.77		05/26/22 02:39	9 67-64-1	
Benzene	1.4	ug/m3	0.58	1.77		05/26/22 02:39	71-43-2	
Benzyl chloride	ND	ug/m3	4.7	1.77		05/26/22 02:39	0 100-44-7	
Bromodichloromethane	ND	ug/m3	2.4	1.77		05/26/22 02:39	75-27-4	
Bromoform	ND	ug/m3	9.3	1.77		05/26/22 02:39	75-25-2	
Bromomethane	ND	ug/m3	1.4	1.77		05/26/22 02:39	74-83-9	
I,3-Butadiene	ND	ug/m3	2.0	1.77		05/26/22 02:39	9 106-99-0	
2-Butanone (MEK)	9.5	ug/m3	5.3	1.77		05/26/22 02:39		
Carbon disulfide	ND	ug/m3	1.1	1.77		05/26/22 02:39		
Carbon tetrachloride	ND	ug/m3	2.3	1.77		05/26/22 02:39		
Chlorobenzene	ND ND	ug/m3	1.7	1.77		05/26/22 02:39		
Chloroethane	ND ND	ug/m3	2.4	1.77		05/26/22 02:39		
Chloroform	ND	ug/m3	0.88	1.77		05/26/22 02:39		
Chloromethane	ND ND	ug/m3	0.74	1.77		05/26/22 02:39		
Cyclohexane	ND ND	-	3.1	1.77		05/26/22 02:39		
•		ug/m3						
Dibromochloromethane	ND	ug/m3	3.1	1.77		05/26/22 02:39 05/26/22 02:39		
,2-Dibromoethane (EDB)	ND	ug/m3	1.4	1.77				
,2-Dichlorobenzene	ND	ug/m3	5.4	1.77		05/26/22 02:39		
,3-Dichlorobenzene	ND	ug/m3	5.4	1.77		05/26/22 02:39		
,4-Dichlorobenzene	ND	ug/m3	5.4	1.77		05/26/22 02:39		
Dichlorodifluoromethane	3.1	ug/m3	1.8	1.77		05/26/22 02:39		
,1-Dichloroethane	ND	ug/m3	1.5	1.77		05/26/22 02:39		
,2-Dichloroethane	ND	ug/m3	1.5	1.77		05/26/22 02:39		
,1-Dichloroethene	ND	ug/m3	1.4	1.77		05/26/22 02:39		
sis-1,2-Dichloroethene	ND	ug/m3	1.4	1.77		05/26/22 02:39		
rans-1,2-Dichloroethene	ND	ug/m3	1.4	1.77		05/26/22 02:39		
,2-Dichloropropane	ND	ug/m3	1.7	1.77		05/26/22 02:39		
sis-1,3-Dichloropropene	ND	ug/m3	4.1	1.77		05/26/22 02:39		
rans-1,3-Dichloropropene	ND	ug/m3	4.1	1.77		05/26/22 02:39	9 10061-02-6	
Dichlorotetrafluoroethane	ND	ug/m3	2.5	1.77		05/26/22 02:39	76-14-2	
Ethanol	150	ug/m3	3.4	1.77		05/26/22 02:39	9 64-17-5	
Ethyl acetate	ND	ug/m3	1.3	1.77		05/26/22 02:39	9 141-78-6	
Ethylbenzene	4.1	ug/m3	1.6	1.77		05/26/22 02:39	9 100-41-4	
-Ethyltoluene	ND	ug/m3	4.4	1.77		05/26/22 02:39	9 622-96-8	
-Heptane	ND	ug/m3	3.7	1.77		05/26/22 02:39	9 142-82-5	
lexachloro-1,3-butadiene	ND	ug/m3	9.6	1.77		05/26/22 02:39	9 87-68-3	
i-Hexane	4.5	ug/m3	1.3	1.77		05/26/22 02:39	9 110-54-3	
-Hexanone	ND	ug/m3	7.4	1.77		05/26/22 02:39	9 591-78-6	
Methylene Chloride	ND	ug/m3	6.2	1.77		05/26/22 02:39		
-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.4	1.77		05/26/22 02:39		
Methyl-tert-butyl ether	ND	ug/m3	6.5	1.77		05/26/22 02:39		
Naphthalene	ND ND	ug/m3	4.7	1.77		05/26/22 02:39		
:-Propanol	8.4	ug/m3	4.4	1.77		05/26/22 02:39		
Propylene	ND	ug/m3	1.5	1.77		05/26/22 02:39		
	ND ND	-	1.5	1.77		05/26/22 02:39		
Styrene 1,1,2,2-Tetrachloroethane	ND ND	ug/m3 ug/m3	2.5	1.77		05/26/22 02:39		

ANALYTICAL RESULTS

Project: City of Ann Arbor
Pace Project No.: 10606801

Sample: SG-3	Lab ID: 106	06801003	Collected: 04/29/2	22 09:44	Received: (05/03/22 12:12	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Meth	nod: TO-15						
	Pace Analytica	l Services -	Minneapolis					
Tetrachloroethene	11.1	ug/m3	1.2	1.77		05/26/22 02:39	127-18-4	
Tetrahydrofuran	ND	ug/m3	2.7	1.77		05/26/22 02:39		
Toluene	30.3	ug/m3	3.4	1.77		05/26/22 02:39		
1,2,4-Trichlorobenzene	ND	ug/m3	13.3	1.77		05/26/22 02:39		
1,1,1-Trichloroethane	ND	ug/m3	2.0	1.77		05/26/22 02:39	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	0.98	1.77		05/26/22 02:39	79-00-5	
Trichloroethene	ND	ug/m3	0.97	1.77		05/26/22 02:39	79-01-6	
Trichlorofluoromethane	ND	ug/m3	5.1	1.77		05/26/22 02:39	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	6.9	1.77		05/26/22 02:39	76-13-1	
1,2,3-Trimethylbenzene	2.1	ug/m3	1.8	1.77		05/26/22 02:39	526-73-8	
1,2,4-Trimethylbenzene	5.3	ug/m3	1.8	1.77		05/26/22 02:39	95-63-6	
1,3,5-Trimethylbenzene	1.9	ug/m3	1.8	1.77		05/26/22 02:39		
Vinyl acetate	ND	ug/m3	1.3	1.77		05/26/22 02:39	108-05-4	
Vinyl chloride	ND	ug/m3	0.92	1.77		05/26/22 02:39	75-01-4	
m&p-Xylene	17.6	ug/m3	3.1	1.77		05/26/22 02:39	179601-23-1	
p-Xylene	6.3	ug/m3	1.6	1.77		05/26/22 02:39	95-47-6	
Sample: SG-4	Lab ID: 106	06801004	Collected: 04/29/2	22 10:47	Received: (05/03/22 12:12	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
	Results Analytical Meth		Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
		nod: TO-15	<u> </u>	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Meth	nod: TO-15 I Services -	<u> </u>	DF 1.83	Prepared	Analyzed 05/26/22 03:12	_	Qua
TO15 MSV AIR Acetone	Analytical Meth	nod: TO-15 I Services - ug/m3	Minneapolis		Prepared		2 67-64-1	
TO15 MSV AIR Acetone Benzene	Analytical Meth Pace Analytica 361	nod: TO-15 I Services - ug/m3 ug/m3	Minneapolis	1.83	Prepared	05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2	
TO15 MSV AIR Acetone Benzene Benzyl chloride	Analytical Meth Pace Analytica 361 1.9	nod: TO-15 I Services - ug/m3 ug/m3 ug/m3	Minneapolis 11.1 0.59	1.83 1.83	Prepared	05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7	
FO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane	Analytical Meth Pace Analytica 361 1.9 ND	nod: TO-15 I Services - ug/m3 ug/m3	Minneapolis 11.1 0.59 4.8	1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4	
CO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform	Analytical Meth Pace Analytica 361 1.9 ND ND	nod: TO-15 I Services - ug/m3 ug/m3 ug/m3 ug/m3	Minneapolis 11.1 0.59 4.8 2.5	1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2	
CO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane	Analytical Meth Pace Analytica 361 1.9 ND ND ND	nod: TO-15 I Services - ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6	1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane	Analytical Meth Pace Analytica 361 1.9 ND ND ND ND	nod: TO-15 I Services - ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4	1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK)	Analytical Meth Pace Analytica 361 1.9 ND ND ND ND ND	nod: TO-15 I Services - ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4 2.1	1.83 1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0 2 78-93-3	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide	Analytical Meth Pace Analytica 361 1.9 ND ND ND ND ND ND	nod: TO-15 I Services - ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4 2.1 5.5	1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0 2 78-93-3 2 75-15-0	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride	Analytical Meth Pace Analytica 361 1.9 ND ND ND ND ND ND ND	nod: TO-15 I Services - ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4 2.1 5.5 1.2	1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0 2 78-93-3 2 75-15-0 2 56-23-5	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Chlorobenzene	Analytical Meth Pace Analytica 361 1.9 ND ND ND ND ND ND ND ND	nod: TO-15 I Services - ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4 2.1 5.5 1.2 2.3	1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0 2 78-93-3 2 75-15-0 2 56-23-5 2 108-90-7	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Chlorobenzene Chloroethane	Analytical Meth Pace Analytica 361 1.9 ND ND ND ND ND ND ND ND ND ND	nod: TO-15 I Services - ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4 2.1 5.5 1.2 2.3 1.7	1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0 2 78-93-3 2 75-15-0 2 56-23-5 2 108-90-7 2 75-00-3	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Chlorobenzene Chloroform	Analytical Meth Pace Analytica 361 1.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	nod: TO-15 I Services - ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4 2.1 5.5 1.2 2.3 1.7 2.5	1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0 2 78-93-3 2 75-15-0 2 56-23-5 2 108-90-7 2 75-00-3 2 67-66-3	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane	Analytical Meth Pace Analytica 361 1.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	nod: TO-15 I Services - ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4 2.1 5.5 1.2 2.3 1.7 2.5 0.91	1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0 2 78-93-3 2 75-15-0 2 56-23-5 2 108-90-7 2 75-00-3 2 67-66-3 2 74-87-3	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane Bromomethane Bromomethane Bromomethane C-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloromethane Cyclohexane	Analytical Meth Pace Analytica 361 1.9 ND ND ND ND ND ND ND ND 1.8 ND ND ND ND 3.7	nod: TO-15 I Services - ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4 2.1 5.5 1.2 2.3 1.7 2.5 0.91 0.77	1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0 2 78-93-3 2 75-15-0 2 56-23-5 2 108-90-7 2 75-00-3 2 67-66-3 2 74-87-3 2 110-82-7	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cyclohexane Dibromochloromethane	Analytical Meth Pace Analytica 361 1.9 ND ND ND ND ND ND ND 3.7 ND	nod: TO-15 I Services - ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4 2.1 5.5 1.2 2.3 1.7 2.5 0.91 0.77 3.2	1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0 2 78-93-3 2 75-15-0 2 56-23-5 2 108-90-7 2 75-00-3 2 67-66-3 2 74-87-3 2 110-82-7 2 124-48-1	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromochloromethane 1,2-Dibromocethane (EDB)	Analytical Meth Pace Analytica 361 1.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	nod: TO-15 I Services - ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4 2.1 5.5 1.2 2.3 1.7 2.5 0.91 0.77 3.2 3.2	1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0 2 78-93-3 2 75-15-0 2 56-23-5 2 108-90-7 2 75-00-3 2 67-66-3 2 74-87-3 2 110-82-7 2 124-48-1 2 106-93-4	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromochlorobenzene (EDB) 1,2-Dichlorobenzene	Analytical Meth Pace Analytica 361 1.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	nod: TO-15 I Services - ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4 2.1 5.5 1.2 2.3 1.7 2.5 0.91 0.77 3.2 3.2 1.4	1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0 2 78-93-3 2 75-15-0 2 56-23-5 2 108-90-7 2 75-00-3 2 67-66-3 2 74-87-3 2 110-82-7 2 124-48-1 2 106-93-4 2 95-50-1	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	Analytical Meth Pace Analytical Meth Pace Analytical 361 1.9 ND	nod: TO-15 I Services - ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4 2.1 5.5 1.2 2.3 1.7 2.5 0.91 0.77 3.2 3.2 1.4 5.6	1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0 2 78-93-3 2 75-15-0 2 56-23-5 2 108-90-7 2 75-00-3 2 67-66-3 2 74-87-3 2 110-82-7 2 124-48-1 2 106-93-4 2 95-50-1 2 541-73-1	
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	Analytical Meth Pace Analytical Meth Pace Analytical 361 1.9 ND	nod: TO-15 I Services - ug/m3	Minneapolis 11.1 0.59 4.8 2.5 9.6 1.4 2.1 5.5 1.2 2.3 1.7 2.5 0.91 0.77 3.2 3.2 1.4 5.6 5.6	1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83	Prepared	05/26/22 03:12 05/26/22 03:12	2 67-64-1 2 71-43-2 2 100-44-7 2 75-27-4 2 75-25-2 2 74-83-9 2 106-99-0 2 78-93-3 2 75-15-0 2 56-23-5 2 108-90-7 2 75-00-3 2 67-66-3 2 74-87-3 2 110-82-7 2 124-48-1 2 106-93-4 2 95-50-1 2 541-73-1 2 106-46-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: City of Ann Arbor Pace Project No.: 10606801

Sample: SG-4	Lab ID: 106	06801004	Collected: 04/29/2	22 10:47	Received: 05/03/	22 12:12	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Meth	nod: TO-15						
	Pace Analytica	l Services -	Minneapolis					
1,2-Dichloroethane	ND	ug/m3	1.5	1.83	05	/26/22 03:12	2 107-06-2	
1,1-Dichloroethene	ND	ug/m3	1.5	1.83		/26/22 03:12		
cis-1,2-Dichloroethene	ND	ug/m3	1.5	1.83		/26/22 03:12		
trans-1,2-Dichloroethene	ND	ug/m3	1.5	1.83		/26/22 03:12		
1,2-Dichloropropane	ND	ug/m3	1.7	1.83		/26/22 03:12		
cis-1,3-Dichloropropene	ND	ug/m3	4.2	1.83			2 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/m3	4.2	1.83			2 10061-02-6	
Dichlorotetrafluoroethane	ND	ug/m3	2.6	1.83		/26/22 03:12		
Ethanol	88.9	ug/m3	3.5	1.83		/26/22 03:12		
Ethyl acetate	ND	ug/m3	1.3	1.83		/26/22 03:12		
Ethylbenzene	4.8	ug/m3	1.6	1.83		/26/22 03:12		
4-Ethyltoluene	ND	ug/m3	4.6	1.83		/26/22 03:12		
n-Heptane	5.6	ug/m3	3.8	1.83		/26/22 03:12		
Hexachloro-1,3-butadiene	ND	ug/m3	9.9	1.83		/26/22 03:12		
n-Hexane	5.4	ug/m3	1.3	1.83		/26/22 03:12		
2-Hexanone	ND	ug/m3	7.6	1.83		/26/22 03:12		
Methylene Chloride	ND	ug/m3	6.5	1.83		/26/22 03:12		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.6	1.83		/26/22 03:12		
Methyl-tert-butyl ether	ND	ug/m3	6.7	1.83			2 1634-04-4	
Naphthalene	ND	ug/m3	4.9	1.83		/26/22 03:12		
2-Propanol	ND	ug/m3	4.6	1.83		/26/22 03:12		
Propylene	6.9	ug/m3	1.6	1.83		/26/22 03:12		
Styrene	1.7	ug/m3	1.6	1.83		/26/22 03:12		
1,1,2,2-Tetrachloroethane	ND	ug/m3	2.6	1.83		/26/22 03:12		
Tetrachloroethene	3.1	ug/m3	1.3	1.83		/26/22 03:12		
Tetrahydrofuran	ND	ug/m3	2.7	1.83		/26/22 03:12		
Toluene	42.4	ug/m3	3.5	1.83		/26/22 03:12		
1,2,4-Trichlorobenzene	ND	ug/m3	13.8	1.83		/26/22 03:12		
1,1,1-Trichloroethane	ND	ug/m3	2.0	1.83		/26/22 03:12		
1,1,2-Trichloroethane	ND	ug/m3	1.0	1.83		/26/22 03:12		
Trichloroethene	ND	ug/m3	1.0	1.83		/26/22 03:12		
Trichlorofluoromethane	ND	ug/m3	5.2	1.83		/26/22 03:12		
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	7.1	1.83		/26/22 03:12		
1,2,3-Trimethylbenzene	2.2	ug/m3	1.8	1.83		/26/22 03:12		
1,2,4-Trimethylbenzene	6.2	ug/m3	1.8	1.83		/26/22 03:12		
1,3,5-Trimethylbenzene	1.9	ug/m3	1.8	1.83		/26/22 03:12		
/inyl acetate	ND	ug/m3	1.3	1.83		/26/22 03:12		
Vinyl chloride	ND	ug/m3	0.95	1.83		/26/22 03:12		
m&p-Xylene	19.6	ug/m3	3.2	1.83			2 179601-23-1	
o-Xylene	8.2	ug/m3	1.6	1.83		/26/22 03:12		

ANALYTICAL RESULTS

Project: City of Ann Arbor
Pace Project No.: 10606801

Sample: SG-5	Lab ID: 10	606801005	Collected: 04/29/2	22 11:09	Received:	05/03/22 12:12	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Me	thod: TO-15						
	Pace Analytic	al Services -	Minneapolis					
Acetone	17.9	ug/m3	10.9	1.8		05/26/22 03:4	5 67-64-1	
Benzene	0.78	ug/m3	0.58	1.8		05/26/22 03:4	5 71-43-2	
Benzyl chloride	ND	ug/m3	4.7	1.8		05/26/22 03:4	5 100-44-7	
Bromodichloromethane	ND	ug/m3	2.4	1.8		05/26/22 03:4	5 75-27-4	
Bromoform	ND	ug/m3	9.4	1.8		05/26/22 03:4	5 75-25-2	
Bromomethane	ND	ug/m3	1.4	1.8		05/26/22 03:4	5 74-83-9	
1,3-Butadiene	ND	ug/m3	2.0	1.8		05/26/22 03:4	5 106-99-0	
2-Butanone (MEK)	ND	ug/m3	5.4	1.8		05/26/22 03:4	5 78-93-3	
Carbon disulfide	1.9	ug/m3	1.1	1.8		05/26/22 03:4	5 75-15-0	
Carbon tetrachloride	ND	ug/m3	2.3	1.8		05/26/22 03:4		
Chlorobenzene	ND	ug/m3	1.7	1.8		05/26/22 03:4	5 108-90-7	
Chloroethane	ND	ug/m3	2.4	1.8		05/26/22 03:4	5 75-00-3	
Chloroform	ND	ug/m3	0.89	1.8		05/26/22 03:4		
Chloromethane	ND	ug/m3	0.76	1.8		05/26/22 03:4		
Cyclohexane	ND	ug/m3	3.2	1.8		05/26/22 03:4		
Dibromochloromethane	ND	ug/m3	3.1	1.8		05/26/22 03:4		
I,2-Dibromoethane (EDB)	ND	ug/m3	1.4	1.8		05/26/22 03:4		
,2-Dichlorobenzene	ND	ug/m3	5.5	1.8		05/26/22 03:4		
,3-Dichlorobenzene	ND	ug/m3	5.5	1.8		05/26/22 03:4		
1,4-Dichlorobenzene	ND	ug/m3	5.5	1.8		05/26/22 03:4		
Dichlorodifluoromethane	2.1	ug/m3	1.8	1.8		05/26/22 03:4		
1,1-Dichloroethane	ND	ug/m3	1.5	1.8		05/26/22 03:4		
1,2-Dichloroethane	ND	ug/m3	1.5	1.8		05/26/22 03:4		
1,1-Dichloroethene	ND ND	ug/m3	1.5	1.8		05/26/22 03:4		
cis-1,2-Dichloroethene	ND ND	_	1.5	1.8		05/26/22 03:4		
rans-1,2-Dichloroethene	ND ND	ug/m3 ug/m3	1.5	1.8		05/26/22 03:4		
•	ND ND	Ū	1.5	1.8		05/26/22 03:4		
1,2-Dichloropropane		ug/m3						
cis-1,3-Dichloropropene	ND	ug/m3	4.2	1.8		05/26/22 03:4		
rans-1,3-Dichloropropene	ND	ug/m3	4.2	1.8		05/26/22 03:4		
Dichlorotetrafluoroethane	ND	ug/m3	2.6	1.8		05/26/22 03:4		
Ethanol	3.5	ug/m3	3.5	1.8		05/26/22 03:4		
Ethyl acetate	ND	ug/m3	1.3	1.8		05/26/22 03:4		
Ethylbenzene	3.8	ug/m3	1.6	1.8		05/26/22 03:4		
I-Ethyltoluene	ND	ug/m3	4.5	1.8		05/26/22 03:4		
n-Heptane	4.4	ug/m3	3.7	1.8		05/26/22 03:4		
Hexachloro-1,3-butadiene	ND	ug/m3	9.8	1.8		05/26/22 03:4		
n-Hexane	3.0	ug/m3	1.3	1.8		05/26/22 03:4		
2-Hexanone	ND	ug/m3	7.5	1.8		05/26/22 03:4		
Methylene Chloride	ND	ug/m3	6.4	1.8		05/26/22 03:4		
I-Methyl-2-pentanone (MIBK)	ND	ug/m3	7.5	1.8		05/26/22 03:4		
Methyl-tert-butyl ether	ND	ug/m3	6.6	1.8		05/26/22 03:4		
Naphthalene	ND	ug/m3	4.8	1.8		05/26/22 03:4		
2-Propanol	ND	ug/m3	4.5	1.8		05/26/22 03:4		
Propylene	1.6	ug/m3	1.6	1.8		05/26/22 03:4		
Styrene	ND	ug/m3	1.6	1.8		05/26/22 03:4	5 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/m3	2.5	1.8		05/26/22 03:4	5 79-34-5	

ANALYTICAL RESULTS

Project: City of Ann Arbor Pace Project No.: 10606801

Sample: SG-5	Lab ID: 106	06801005	Collected: 04/29/2	22 11:09	Received: 0	5/03/22 12:12 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Meth	nod: TO-15						
	Pace Analytica	l Services -	Minneapolis					
Tetrachloroethene	9.8	ug/m3	1.2	1.8		05/26/22 03:45	127-18-4	
Tetrahydrofuran	ND	ug/m3	2.7	1.8		05/26/22 03:45	109-99-9	
Toluene	22.0	ug/m3	3.4	1.8		05/26/22 03:45	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	13.6	1.8		05/26/22 03:45	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	2.0	1.8		05/26/22 03:45		
1,1,2-Trichloroethane	ND	ug/m3	1.0	1.8		05/26/22 03:45	79-00-5	
Trichloroethene	ND	ug/m3	0.98	1.8		05/26/22 03:45	79-01-6	
Trichlorofluoromethane	ND	ug/m3	5.1	1.8		05/26/22 03:45	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	7.0	1.8		05/26/22 03:45		
1,2,3-Trimethylbenzene	2.0	ug/m3	1.8	1.8		05/26/22 03:45		
1,2,4-Trimethylbenzene	5.0	ug/m3	1.8	1.8		05/26/22 03:45		
1,3,5-Trimethylbenzene	ND	ug/m3	1.8	1.8		05/26/22 03:45		
Vinyl acetate	ND	ug/m3	1.3	1.8		05/26/22 03:45		
Vinyl chloride	ND	ug/m3	0.94	1.8		05/26/22 03:45		
m&p-Xylene	14.7	ug/m3	3.2	1.8		05/26/22 03:45		
o-Xylene	6.2	ug/m3	1.6	1.8		05/26/22 03:45		
o Aylone	0.2	ug/IIIo	1.0	1.0		00/20/22 00.40	33 47 0	
Sample: SG-6	Lab ID: 106	06801006	Collected: 04/29/2	22 11:49	Received: 0	5/03/22 12:12 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Meth	nod: TO-15						
10.0	Pace Analytica		Minneanolis					
	i ace Analytica	i dei vices -	Willineapolis					
Acetone	ND	ug/m3	663	109.8		05/26/22 05:19	67-64-1	
Benzene	ND	ug/m3	35.7	109.8		05/26/22 05:19	71-43-2	
Benzyl chloride							7 1 10 2	
20.12). 0.1101.00	ND	ug/m3	289	109.8		05/26/22 05:19		
•	ND ND	ug/m3 ug/m3	289 149	109.8 109.8		05/26/22 05:19 05/26/22 05:19	100-44-7	
Bromodichloromethane		-					100-44-7 75-27-4	
Bromodichloromethane Bromoform	ND	ug/m3	149	109.8		05/26/22 05:19	100-44-7 75-27-4 75-25-2	
Bromodichloromethane Bromoform Bromomethane	ND ND	ug/m3 ug/m3	149 576	109.8 109.8		05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene	ND ND ND	ug/m3 ug/m3 ug/m3	149 576 86.6	109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK)	ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3	149 576 86.6 123	109.8 109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 78-93-3	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide	ND ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	149 576 86.6 123 329	109.8 109.8 109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 78-93-3 75-15-0	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride	ND ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	149 576 86.6 123 329 69.5	109.8 109.8 109.8 109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 78-93-3 75-15-0 56-23-5	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	ND ND ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	149 576 86.6 123 329 69.5 141	109.8 109.8 109.8 109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 78-93-3 75-15-0 56-23-5 108-90-7	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane	ND ND ND ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	149 576 86.6 123 329 69.5 141	109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform	ND ND ND ND ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	149 576 86.6 123 329 69.5 141 103 147	109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane	ND ND ND ND ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	149 576 86.6 123 329 69.5 141 103 147 54.5	109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloromethane Cyclohexane	ND ND ND ND ND ND ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	149 576 86.6 123 329 69.5 141 103 147 54.5 46.1	109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 110-82-7	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloromethane Cyclohexane Dibromochloromethane	ND ND ND ND ND ND ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	149 576 86.6 123 329 69.5 141 103 147 54.5 46.1 192	109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 110-82-7 124-48-1	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB)	ND ND ND ND ND ND ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	149 576 86.6 123 329 69.5 141 103 147 54.5 46.1 192 190 85.8	109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 110-82-7 124-48-1 106-93-4	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	ND ND ND ND ND ND ND ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	149 576 86.6 123 329 69.5 141 103 147 54.5 46.1 192 190 85.8 336	109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 110-82-7 124-48-1 106-93-4 95-50-1	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND ND ND ND ND ND ND ND ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	149 576 86.6 123 329 69.5 141 103 147 54.5 46.1 192 190 85.8 336 336	109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 110-82-7 124-48-1 106-93-4 95-50-1 541-73-1	
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND ND ND ND ND ND ND ND ND	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	149 576 86.6 123 329 69.5 141 103 147 54.5 46.1 192 190 85.8 336 336	109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8		05/26/22 05:19 05/26/22 05:19	100-44-7 75-27-4 75-25-2 74-83-9 106-99-0 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 110-82-7 124-48-1 106-93-4 95-50-1 541-73-1 106-46-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: City of Ann Arbor Pace Project No.: 10606801

Sample: SG-6	Lab ID: 106	06801006	Collected: 04/29/2	22 11:49	Received: 05/03/2	22 12:12	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	nod: TO-15						
	Pace Analytica	l Services -	Minneapolis					
1,2-Dichloroethane	ND	ug/m3	90.4	109.8	05/:	26/22 05:1	9 107-06-2	
1,1-Dichloroethene	ND	ug/m3	88.5	109.8			9 75-35-4	
cis-1,2-Dichloroethene	ND	ug/m3	88.5	109.8			9 156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	88.5	109.8			9 156-60-5	
1,2-Dichloropropane	ND	ug/m3	103	109.8			9 78-87-5	
cis-1,3-Dichloropropene	ND	ug/m3	254	109.8			9 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/m3	254	109.8			9 10061-02-6	
Dichlorotetrafluoroethane	ND	ug/m3	156	109.8			9 76-14-2	
Ethanol	ND	ug/m3	211	109.8			9 64-17-5	
Ethyl acetate	ND	ug/m3	80.5	109.8			9 141-78-6	
Ethylbenzene	ND	ug/m3	97.0	109.8			9 100-41-4	
4-Ethyltoluene	ND	ug/m3	274	109.8			9 622-96-8	
n-Heptane	1690	ug/m3	229	109.8			9 142-82-5	
Hexachloro-1,3-butadiene	ND	ug/m3	595	109.8			9 87-68-3	
n-Hexane	3250	ug/m3	78.6	109.8			9 110-54-3	
2-Hexanone	ND	ug/m3	457	109.8			9 591-78-6	
Methylene Chloride	ND	ug/m3	388	109.8			9 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	457	109.8			9 108-10-1	
Methyl-tert-butyl ether	ND	ug/m3		109.8			9 1634-04-4	
Naphthalene	ND	ug/m3	292	109.8			9 91-20-3	
2-Propanol	ND	ug/m3	274	109.8			9 67-63-0	
Propylene	ND	ug/m3	96.1	109.8			9 115-07-1	
Styrene	ND	ug/m3	95.1	109.8			9 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/m3	154	109.8			9 79-34-5	
Tetrachloroethene	138	ug/m3	75.7	109.8			9 127-18-4	
Tetrahydrofuran	ND	ug/m3	165	109.8			9 109-99-9	
Toluene	ND ND	ug/m3	210	109.8			9 108-88-3	
1,2,4-Trichlorobenzene	ND ND	ug/m3	828	109.8			9 120-82-1	
1,1,1-Trichloroethane	ND ND	ug/m3	122	109.8			9 71-55-6	
1,1,2-Trichloroethane	ND ND	ug/m3	60.9	109.8			9 79-00-5	
Trichloroethene	ND ND	ug/m3	60.0	109.8			9 79-00-3 9 79-01-6	
Trichlorofluoromethane	ND ND	ug/m3	313	109.8			9 75-69-4	
1,1,2-Trichlorotrifluoroethane	ND ND	ug/m3	428	109.8			9 75-69-4 9 76-13-1	
1,2,3-Trimethylbenzene	ND ND	ug/m3	110	109.8			9 526-73-8	
•	ND ND	ug/m3	110	109.8			9 95-63-6	
1,2,4-Trimethylbenzene	ND ND	Ū	110	109.8			9 95-63-6 9 108-67-8	
1,3,5-Trimethylbenzene	ND ND	ug/m3 ug/m3	78.6	109.8			9 108-67-8	
/inyl acetate /inyl chloride	ND ND	ug/m3	76.6 57.1	109.8			9 75-01-4	
•		Ū	_					
m&p-Xylene	ND	ug/m3	194	109.8			9 179601-23-1	
o-Xylene	ND	ug/m3	97.0	109.8	05/2	20/22 05:1	9 95-47-6	

Project: City of Ann Arbor

Pace Project No.: 10606801

Date: 05/27/2022 11:29 AM

QC Batch: 817109 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10606801001, 10606801002, 10606801003, 10606801004, 10606801005, 10606801006

METHOD BLANK: 4330783 Matrix: Air

Associated Lab Samples: 10606801001, 10606801002, 10606801003, 10606801004, 10606801005, 10606801006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	05/25/22 16:49	
1,1,2,2-Tetrachloroethane	ug/m3	ND	1.4	05/25/22 16:49	
1,1,2-Trichloroethane	ug/m3	ND	0.56	05/25/22 16:49	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	3.9	05/25/22 16:49	MN
1,1-Dichloroethane	ug/m3	ND	0.82	05/25/22 16:49	
1,1-Dichloroethene	ug/m3	ND	0.81	05/25/22 16:49	
1,2,3-Trimethylbenzene	ug/m3	ND	1.0	05/25/22 16:49	
1,2,4-Trichlorobenzene	ug/m3	ND	7.5	05/25/22 16:49	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	05/25/22 16:49	
1,2-Dibromoethane (EDB)	ug/m3	ND	0.78	05/25/22 16:49	
1,2-Dichlorobenzene	ug/m3	ND	3.1	05/25/22 16:49	
1,2-Dichloroethane	ug/m3	ND	0.82	05/25/22 16:49	
1,2-Dichloropropane	ug/m3	ND	0.94	05/25/22 16:49	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	05/25/22 16:49	
1,3-Butadiene	ug/m3	ND	1.1	05/25/22 16:49	MN
1,3-Dichlorobenzene	ug/m3	ND	3.1	05/25/22 16:49	
1,4-Dichlorobenzene	ug/m3	ND	3.1	05/25/22 16:49	
2-Butanone (MEK)	ug/m3	ND	3.0	05/25/22 16:49	
2-Hexanone	ug/m3	ND	4.2	05/25/22 16:49	
2-Propanol	ug/m3	ND	2.5	05/25/22 16:49	
4-Ethyltoluene	ug/m3	ND	2.5	05/25/22 16:49	
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	4.2	05/25/22 16:49	
Acetone	ug/m3	ND	6.0	05/25/22 16:49	
Benzene	ug/m3	ND	0.32	05/25/22 16:49	
Benzyl chloride	ug/m3	ND	2.6	05/25/22 16:49	
Bromodichloromethane	ug/m3	ND	1.4	05/25/22 16:49	
Bromoform	ug/m3	ND	5.2	05/25/22 16:49	
Bromomethane	ug/m3	ND	0.79	05/25/22 16:49	
Carbon disulfide	ug/m3	ND	0.63	05/25/22 16:49	
Carbon tetrachloride	ug/m3	ND	1.3	05/25/22 16:49	
Chlorobenzene	ug/m3	ND	0.94	05/25/22 16:49	
Chloroethane	ug/m3	ND	1.3	05/25/22 16:49	MN
Chloroform	ug/m3	ND	0.50	05/25/22 16:49	
Chloromethane	ug/m3	ND	0.42	05/25/22 16:49	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	05/25/22 16:49	
cis-1,3-Dichloropropene	ug/m3	ND	2.3	05/25/22 16:49	
Cyclohexane	ug/m3	ND	1.8	05/25/22 16:49	
Dibromochloromethane	ug/m3	ND	1.7	05/25/22 16:49	
Dichlorodifluoromethane	ug/m3	ND	1.0	05/25/22 16:49	
Dichlorotetrafluoroethane	ug/m3	ND	1.4	05/25/22 16:49	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: City of Ann Arbor

Pace Project No.: 10606801

Date: 05/27/2022 11:29 AM

METHOD BLANK: 4330783 Matrix: Air

Associated Lab Samples: 10606801001, 10606801002, 10606801003, 10606801004, 10606801005, 10606801006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Ethanol	ug/m3	ND	1.9	05/25/22 16:49	-
Ethyl acetate	ug/m3	ND	0.73	05/25/22 16:49	
Ethylbenzene	ug/m3	ND	0.88	05/25/22 16:49	
Hexachloro-1,3-butadiene	ug/m3	ND	5.4	05/25/22 16:49	
m&p-Xylene	ug/m3	ND	1.8	05/25/22 16:49	
Methyl-tert-butyl ether	ug/m3	ND	3.7	05/25/22 16:49	
Methylene Chloride	ug/m3	ND	3.5	05/25/22 16:49	
n-Heptane	ug/m3	ND	2.1	05/25/22 16:49	MN
n-Hexane	ug/m3	ND	0.72	05/25/22 16:49	
Naphthalene	ug/m3	ND	2.7	05/25/22 16:49	
o-Xylene	ug/m3	ND	0.88	05/25/22 16:49	
Propylene	ug/m3	ND	0.88	05/25/22 16:49	
Styrene	ug/m3	ND	0.87	05/25/22 16:49	
Tetrachloroethene	ug/m3	ND	0.69	05/25/22 16:49	
Tetrahydrofuran	ug/m3	ND	1.5	05/25/22 16:49	MN
Toluene	ug/m3	ND	1.9	05/25/22 16:49	MN
trans-1,2-Dichloroethene	ug/m3	ND	0.81	05/25/22 16:49	
trans-1,3-Dichloropropene	ug/m3	ND	2.3	05/25/22 16:49	
Trichloroethene	ug/m3	ND	0.55	05/25/22 16:49	
Trichlorofluoromethane	ug/m3	ND	2.9	05/25/22 16:49	MN
Vinyl acetate	ug/m3	ND	0.72	05/25/22 16:49	
Vinyl chloride	ug/m3	ND	0.52	05/25/22 16:49	MN

LABORATORY CONTROL SAMPLE:	4330784					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.2	50.1	91	70-130	
1,1,2,2-Tetrachloroethane	ug/m3	72.5	68.4	94	70-132	
1,1,2-Trichloroethane	ug/m3	56.3	60.2	107	70-131	
1,1,2-Trichlorotrifluoroethane	ug/m3	77.9	65.7	84	70-130	
1,1-Dichloroethane	ug/m3	42.1	38.1	90	70-130	
1,1-Dichloroethene	ug/m3	41.5	40.5	98	70-130	
1,2,3-Trimethylbenzene	ug/m3	54.6	47.8	88	70-140	
1,2,4-Trichlorobenzene	ug/m3	82	66.8	82	70-130	
1,2,4-Trimethylbenzene	ug/m3	51.9	50.5	97	70-137	
1,2-Dibromoethane (EDB)	ug/m3	80.4	78.3	97	70-137	
1,2-Dichlorobenzene	ug/m3	66	64.3	97	70-131	
1,2-Dichloroethane	ug/m3	42.1	38.9	92	70-134	
1,2-Dichloropropane	ug/m3	47.1	51.7	110	70-130	
1,3,5-Trimethylbenzene	ug/m3	51.4	52.3	102	70-131	
1,3-Butadiene	ug/m3	23	20.9	91	70-139	
1,3-Dichlorobenzene	ug/m3	63	62.0	98	70-134	
1,4-Dichlorobenzene	ug/m3	65.5	58.0	89	70-131	
2-Butanone (MEK)	ug/m3	32.4	32.4	100	70-133	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: City of Ann Arbor Pace Project No.: 10606801

LABORATORY CONTROL SAMPLE:	4330784					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
2-Hexanone	ug/m3	41.4	42.3	102	70-136	
2-Propanol	ug/m3	27.4	25.1	92	65-133	
1-Ethyltoluene	ug/m3	51.7	50.4	98	70-130	
1-Methyl-2-pentanone (MIBK)	ug/m3	42.4	42.4	100	70-130	
Acetone	ug/m3	24.6	21.5	87	60-134	
Benzene	ug/m3	32.9	34.2	104	70-130	
Benzyl chloride	ug/m3	57.3	54.2	95	70-130	
Bromodichloromethane	ug/m3	69.7	67.5	97	70-130	
Bromoform	ug/m3	110	108	98	70-138	
Bromomethane	ug/m3	39.9	37.7	94	68-131	
Carbon disulfide	ug/m3	33.4	33.8	101	70-130	
Carbon tetrachloride	ug/m3	65	63.3	97	70-132	
Chlorobenzene	ug/m3	48.3	48.1	100	70-130	
Chloroethane	ug/m3	26.9	27.7	103	70-134	
Chloroform	ug/m3	48.5	43.6	90	70-130	
Chloromethane	ug/m3	21.1	21.5	102	68-131	
sis-1,2-Dichloroethene	ug/m3	41	44.8	109	70-136	
sis-1,3-Dichloropropene	ug/m3	46.9	52.3	111	70-130	
Cyclohexane	ug/m3	35.2	36.1	102	70-131	
Dibromochloromethane	ug/m3	87.3	83.2	95	70-134	
Dichlorodifluoromethane	ug/m3	51.3	44.7	87	70-130	
Dichlorotetrafluoroethane	ug/m3	65.1	59.1	91	70-130	
Ethanol	ug/m3	19.2	20.4	107	55-145	
Ethyl acetate	ug/m3	35.9	41.6	116	70-135	
Ethylbenzene	ug/m3	45.6	47.6	104	70-133	
lexachloro-1,3-butadiene	ug/m3	117	119	102	70-132	
n&p-Xylene	ug/m3	45.9	43.1	94	70-134	
Methyl-tert-butyl ether	ug/m3	36.9	40.4	110	70-131	
Methylene Chloride	ug/m3	37.8	31.0	82	65-132	
n-Heptane	ug/m3	41.7	43.9	105	70-130	
n-Hexane	ug/m3	35.1	40.6	116	70-132	
Naphthalene	ug/m3	58.1	58.9	101	70-130	
- -Xylene	ug/m3	46	45.3	99	70-134	
Propylene	ug/m3	17.9	18.8	105	69-133	
Styrene	ug/m3	45.3	44.5	98	70-135	
etrachloroethene	ug/m3	69.9	69.5	100	70-134	
- etrahydrofuran	ug/m3	30.1	30.5	101	70-140	
oluene	ug/m3	39.4	40.9	104	70-136	
rans-1,2-Dichloroethene	ug/m3	40.8	37.7	92	70-134	
rans-1,3-Dichloropropene	ug/m3	48.2	47.2	98	70-131	
richloroethene	ug/m3	55.7	59.2	106	70-134	
Frichlorofluoromethane	ug/m3	56.5	49.3	87	63-130	
/inyl acetate	ug/m3	38.1	49.6	130	70-139	
/inyl chloride	ug/m3	26.6	26.1	98	70-132	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: City of Ann Arbor

Pace Project No.: 10606801

Date: 05/27/2022 11:29 AM

SAMPLE DUPLICATE: 4335814						
Parameter	Units	10607164006 Result	Dup Result	RPD	Max RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3		ND		25	
1,1,2,2-Tetrachloroethane	ug/m3	<11.8	ND		25	
1,1,2-Trichloroethane	ug/m3	<6.2	ND		25	
1,1,2-Trichlorotrifluoroethane	ug/m3	<9.1	ND		25	
1,1-Dichloroethane	ug/m3	<5.2	ND		25	
1,1-Dichloroethene	ug/m3	<4.4	ND		25	
1,2,3-Trimethylbenzene	ug/m3	<9.2	ND		25	
1,2,4-Trichlorobenzene	ug/m3	<154	ND		25	
1,2,4-Trimethylbenzene	ug/m3	<11.2	ND		25	
1,2-Dibromoethane (EDB)	ug/m3	<9.5	ND		25	
1,2-Dichlorobenzene	ug/m3	<12.8	ND		25	
1,2-Dichloroethane	ug/m3	<6.1	ND		25	
1,2-Dichloropropane	ug/m3	<8.5	ND		25	
1,3,5-Trimethylbenzene	ug/m3	<9.2	ND		25	
1,3-Butadiene	ug/m3	<3.8	ND		25	
1,3-Dichlorobenzene	ug/m3	<16.1	ND		25	
1,4-Dichlorobenzene	ug/m3	<27.7	ND		25	
2-Butanone (MEK)	ug/m3	<14.7	ND		25	
2-Hexanone	ug/m3	<14.0	ND		25	
2-Propanol	ug/m3	<16.1	ND		25	
4-Ethyltoluene	ug/m3	<14.9	ND		25	
4-Methyl-2-pentanone (MIBK)	ug/m3	<10.1	ND		25	
Acetone	ug/m3	<57.2	ND		25	
Benzene	ug/m3	<3.6	ND		25	
Benzyl chloride	ug/m3	<28.1	ND		25	
Bromodichloromethane	ug/m3	<7.5	ND		25	
Bromoform	ug/m3	<51.2	ND		25	
Bromomethane	ug/m3	<4.7	ND		25	
Carbon disulfide	ug/m3	<4.1	ND		25	
Carbon tetrachloride	ug/m3	<8.8	ND		25	
Chlorobenzene	ug/m3	<4.9	ND		25	
Chloroethane	ug/m3	<7.1	ND		25	
Chloroform	ug/m3	<5.8	ND		25	
Chloromethane	ug/m3	<2.7	ND		25	
cis-1,2-Dichloroethene	ug/m3	<6.2	ND		25	
cis-1,3-Dichloropropene	ug/m3	<8.1	ND		25	
Cyclohexane	ug/m3	<7.0	ND		25	
Dibromochloromethane	ug/m3	<16.3	ND		25	
Dichlorodifluoromethane	ug/m3	1820	1780	2	25	
Dichlorotetrafluoroethane	ug/m3	<6.4	ND		25	
Ethanol	ug/m3	<18.7	ND		25	
Ethyl acetate	ug/m3	<4.1	ND		25	
Ethylbenzene	ug/m3	<9.8	ND		25	
Hexachloro-1,3-butadiene	ug/m3	<38.9	ND		25	
m&p-Xylene	ug/m3	<20.3	ND		25	
Methyl-tert-butyl ether	ug/m3	<4.0	ND		25	
Methylene Chloride	ug/m3	<18.7	ND		25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: City of Ann Arbor

Pace Project No.: 10606801

Date: 05/27/2022 11:29 AM

SAMPLE DUPLICATE: 4335814						
		10607164006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
n-Heptane	ug/m3	<5.7	ND		25	
n-Hexane	ug/m3	<6.0	ND		25	
Naphthalene	ug/m3	<68.6	ND		25	
o-Xylene	ug/m3	<8.6	ND		25	
Propylene	ug/m3	<4.1	ND		25	
Styrene	ug/m3	<12.2	ND		25	
Tetrachloroethene	ug/m3	<9.2	ND		25	
Tetrahydrofuran	ug/m3	<5.7	ND		25	
Toluene	ug/m3	<7.7	ND		25	
trans-1,2-Dichloroethene	ug/m3	<5.3	ND		25	
trans-1,3-Dichloropropene	ug/m3	<17.2	ND		25	
Trichloroethene	ug/m3	<6.2	ND		25	
Trichlorofluoromethane	ug/m3	<7.4	ND		25	
Vinyl acetate	ug/m3	<6.6	ND		25	
Vinyl chloride	ug/m3	<2.7	ND		25	

1,1-Trichloroethane ug/m3 <5.7 ND 25 1,2,2-Tetrachloroethane ug/m3 <11.3 ND 25 1,2-Trichloroethane ug/m3 <6.0 ND 25 1,2-Trichlorotrifluoroethane ug/m3 <8.8 ND 25 1,2-Trichlorotrifluoroethane ug/m3 <8.8 ND 25 1-Dichloroethane ug/m3 <5.0 ND 25 1-Dichloroethane ug/m3 <4.2 ND 25 2,3-Trimethylbenzene ug/m3 <8.9 ND 25 2,4-Trichlorobenzene ug/m3 <10.8 ND 25 2,4-Trimethylbenzene ug/m3 <10.8 ND 25 2-Dichlorobenzene ug/m3 <10.8 ND 25 2-Dichlorobenzene ug/m3 <12.3 ND 25 2-Dichlorobenzene ug/m3 <12.3 ND 25 2-Dichlorobenzene ug/m3 <12.3 ND 25 2-Dichlorobenzene ug/m3 <8.2 ND 25 2-Dichlorobenzene u	SAMPLE DUPLICATE: 4335815						
1,1-Trichloroethane ug/m3 <5.7 ND 25 1,2,2-Tetrachloroethane ug/m3 <11.3 ND 25 1,2-Trichloroethane ug/m3 <6.0 ND 25 1,2-Trichlorotrifluoroethane ug/m3 <8.8 ND 25 1,2-Trichlorotrifluoroethane ug/m3 <8.8 ND 25 1-Dichloroethane ug/m3 <5.0 ND 25 1-Dichloroethane ug/m3 <4.2 ND 25 2,3-Trimethylbenzene ug/m3 <4.2 ND 25 2,4-Trichlorobenzene ug/m3 <10.8 ND 25 2,4-Trimethylbenzene ug/m3 <10.8 ND 25 2-Dichlorobenzene ug/m3 <10.8 ND 25 2-Dichlorobenzene ug/m3 <12.3 ND 25 2-Dichlorobenzene			10607164007	Dup		Max	
1,2,2-Tetrachloroethane ug/m3 <11.3 ND 25 1,2-Trichloroethane ug/m3 <6.0 ND 25 1,2-Trichlorotrifluoroethane ug/m3 <8.8 ND 25 1-Dichloroethane ug/m3 <5.0 ND 25 1-Dichloroethane ug/m3 <4.2 ND 25 2,3-Trimethylbenzene ug/m3 <4.2 ND 25 2,3-Trimethylbenzene ug/m3 <14.8 ND 25 2,4-Trichlorobenzene ug/m3 <10.8 ND 25 2,4-Trimethylbenzene ug/m3 <10.8 ND 25 2,4-Trimethylbenzene ug/m3 <10.8 ND 25 2,1-Trimethylbenzene ug/m3 <10.8 ND 25 2-Dichlorobenzene ug/m3 <12.3 ND 25 2-Dichlorobenzene ug/m3 <12.3 ND 25 2-Dichlorobenzene ug/m3 <8.2 ND 25 2-Dichlorobenzene ug/m3 <8.8 ND 25 3-Butadiene ug/m3	Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Trichloroethane ug/m3 <6.0	1,1,1-Trichloroethane	ug/m3	<5.7	ND		25	
1,2-Trichlorotrifluoroethane ug/m3 <8.8	1,1,2,2-Tetrachloroethane	ug/m3	<11.3	ND		25	
1-Dichloroethane	1,1,2-Trichloroethane	ug/m3	<6.0	ND		25	
1-Dichloroethene ug/m3	1,1,2-Trichlorotrifluoroethane	ug/m3	<8.8	ND		25	
2,3-Trimethylbenzene ug/m3 <8.9	1,1-Dichloroethane	ug/m3	<5.0	ND		25	
2,4-Trichlorobenzene ug/m3 <148	1,1-Dichloroethene	ug/m3	<4.2	ND		25	
2,4-Trimethylbenzene ug/m3 < 10.8 ND	1,2,3-Trimethylbenzene	ug/m3	<8.9	ND		25	
2-Dibromoethane (EDB)	1,2,4-Trichlorobenzene	ug/m3	<148	ND		25	
2-Dichlorobenzene ug/m3 <12.3 ND 25 2-Dichloroethane ug/m3 <5.9 ND 25 3-Dichloropropane ug/m3 <8.2 ND 25 3,5-Trimethylbenzene ug/m3 <8.8 ND 25 3-Butadiene ug/m3 <15.5 ND 25 3-Dichlorobenzene ug/m3 <15.5 ND 25 4-Dichlorobenzene ug/m3 <14.1 ND 25 4-Butanone (MEK) ug/m3 <11.4 ND 25 4-Propanol ug/m3 <15.5 ND 25 4-Propanol ug/m3 <15.5 ND 25 4-Dichlorobenzene ug/m3 <13.4 ND 25 4-Dichlorobenzene ug/m3 <15.5 ND 25 4-Dichlorobenzene ug/m3 <14.3 ND 25 4-Dichlorobenzene ug/m3 <15.5 ND 25 4-Dichlorobenzene ug/m3 ND 25 4-Dichlorobenzene ug/m3 ND 25 4-Dichlorobenzene ug/m3 ND 2	1,2,4-Trimethylbenzene	ug/m3	<10.8	ND		25	
2-Dichloroethane ug/m3 <5.9 ND 25 2-Dichloropropane ug/m3 <8.2 ND 25 3,5-Trimethylbenzene ug/m3 <8.8 ND 25 3-Butadiene ug/m3 <3.6 ND 25 3-Dichlorobenzene ug/m3 <15.5 ND 25 4-Dichlorobenzene ug/m3 <26.7 ND 25 4-Dichlorobenzene ug/m3 <15.5 ND 25 4-Dichlorobenzene ug/m3 <14.1 ND 25 4-Butanone (MEK) ug/m3 <14.1 ND 25 4-Propanol ug/m3 <15.5 ND 25 4-Propanol ug/m3 <15.5 ND 25 4-Butanone (MEK) Ug/m3 <10.4 ND 25 4-Butanone (MEK) Ug/m3 <10.4 ND 25 4-Dichlorobenzene u	1,2-Dibromoethane (EDB)	ug/m3	<9.1	ND		25	
2-Dichloropropane ug/m3	1,2-Dichlorobenzene	ug/m3	<12.3	ND		25	
3,5-Trimethylbenzene ug/m3 < 8.8 ND 25 3-Butadiene ug/m3 < 3.6 ND 25 3-Dichlorobenzene ug/m3 <15.5 ND 25 4-Dichlorobenzene ug/m3 <26.7 ND 25 Butanone (MEK) ug/m3 <14.1 ND 25	1,2-Dichloroethane	ug/m3	<5.9	ND		25	
3-Butadiene ug/m3 <3.6 ND 25 3-Dichlorobenzene ug/m3 <15.5 ND 25 4-Dichlorobenzene ug/m3 <26.7 ND 25 Butanone (MEK) ug/m3 <14.1 ND 25	1,2-Dichloropropane	ug/m3	<8.2	ND		25	
3-Butadiene ug/m3 <3.6	1,3,5-Trimethylbenzene	ug/m3	<8.8	ND		25	
4-Dichlorobenzene ug/m3 <26.7 ND 25 Butanone (MEK) ug/m3 <14.1 ND 25 Hexanone ug/m3 <13.4 ND 25 Propanol ug/m3 <15.5 ND 25 Ethyltoluene ug/m3 <14.3 ND 25 Methyl-2-pentanone (MIBK) ug/m3 <9.8 ND 25 cetone ug/m3 <55.0 ND 25 enzene ug/m3 <3.5 ND 25 enzene ug/m3 <3.5 ND 25 enzel ug/m3 <3.5 ND 35 enzel ug/m3 <4.7 ND 35 enzel	1,3-Butadiene	ug/m3	<3.6	ND		25	
4-Dichlorobenzene ug/m3 <26.7	1,3-Dichlorobenzene	ug/m3	<15.5	ND		25	
Hexanone ug/m3 <13.4 ND 25 -Propanol ug/m3 <15.5 ND 25 -Ethyltoluene ug/m3 <14.3 ND 25 -Methyl-2-pentanone (MIBK) ug/m3 <9.8 ND 25	1,4-Dichlorobenzene	-	<26.7	ND		25	
Hexanone ug/m3 <13.4	2-Butanone (MEK)	ug/m3	<14.1	ND		25	
Ethyltoluene ug/m3 <14.3	2-Hexanone		<13.4	ND		25	
Ethyltoluene ug/m3 <14.3	2-Propanol	ug/m3	<15.5	ND		25	
cetone ug/m3 <55.0 ND 25 enzene ug/m3 <3.5	4-Ethyltoluene		<14.3	ND		25	
cetone ug/m3 <55.0 ND 25 enzene ug/m3 <3.5	4-Methyl-2-pentanone (MIBK)	ug/m3	<9.8	ND		25	
enzyl chloride ug/m3 <27.1 ND 25	Acetone		<55.0	ND		25	
enzyl chloride ug/m3 <27.1 ND 25	Benzene	ug/m3	<3.5	ND		25	
,	Benzyl chloride	_	<27.1	ND		25	
	Bromodichloromethane	ug/m3	<7.2	ND		25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: City of Ann Arbor

Pace Project No.: 10606801

Date: 05/27/2022 11:29 AM

SAMPLE DUPLICATE: 4335815		40007404007	D		N.4	
Parameter	Units	10607164007 Result	Dup Result	RPD	Max RPD	Qualifiers
Bromoform	ug/m3	<49.2	ND		25	
Bromomethane	ug/m3	<4.6	ND		25	
Carbon disulfide	ug/m3	<3.9	ND		25	
Carbon tetrachloride	ug/m3	<8.5	ND		25	
Chlorobenzene	ug/m3	<4.7	ND		25	
Chloroethane	ug/m3	<6.8	ND		25	
Chloroform	ug/m3	<5.6	ND		25	
Chloromethane	ug/m3	<2.6	ND		25	
cis-1,2-Dichloroethene	ug/m3	<5.9	ND		25	
cis-1,3-Dichloropropene	ug/m3	<7.8	ND		25	
Cyclohexane	ug/m3	<6.7	ND		25	
Dibromochloromethane	ug/m3	<15.7	ND		25	
Dichlorodifluoromethane	ug/m3	2580	2640	2	25	
Dichlorotetrafluoroethane	ug/m3	<6.1	ND		25	
Ethanol	ug/m3	<18.0	ND		25	
Ethyl acetate	ug/m3	<4.0	ND		25	
Ethylbenzene	ug/m3	<9.4	ND		25	
Hexachloro-1,3-butadiene	ug/m3	<37.4	ND		25	
n&p-Xylene	ug/m3	<19.5	ND		25	
Methyl-tert-butyl ether	ug/m3	<3.8	ND		25	
Methylene Chloride	ug/m3	<18.0	ND		25	
n-Heptane	ug/m3	<5.5	ND		25	
n-Hexane	ug/m3	<5.8	ND		25	
Naphthalene	ug/m3	<66.0	ND		25	
- -Xylene	ug/m3	<8.2	ND		25	
Propylene	ug/m3	<4.0	ND		25	
Styrene	ug/m3	<11.7	ND		25	
Tetrachloroethene	ug/m3	78.8	83.2	5	25	
Tetrahydrofuran	ug/m3	<5.5	ND		25	
Toluene	ug/m3	<7.4	ND		25	
rans-1,2-Dichloroethene	ug/m3	<5.1	ND		25	
rans-1,3-Dichloropropene	ug/m3	<16.5	ND		25	
Frichloroethene	ug/m3	<6.0	ND		25	
Trichlorofluoromethane	ug/m3	<7.1	ND		25	
Vinyl acetate	ug/m3	<6.3	ND		25	
Vinyl chloride	ug/m3	<2.6	ND		25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: City of Ann Arbor Pace Project No.: 10606801

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/27/2022 11:29 AM

E Analyte concentration exceeded the calibration range. The reported result is estimated.

MN The reporting limit has been raised in accordance with Minnesota Statutes 4740.2100 Subpart 8. C, D. Reporting Limit Evaluation Rule.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: City of Ann Arbor

Pace Project No.: 10606801

Date: 05/27/2022 11:29 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10606801001	SG-1	TO-15	817109		
10606801002	SG-2	TO-15	817109		
10606801003	SG-3	TO-15	817109		
10606801004	SG-4	TO-15	817109		
10606801005	SG-5	TO-15	817109		
10606801006	SG-6	TO-15	817109		

Pace Analytical www.pacelabs.com

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Secti	2	Section B Required Project Information:	ct Inform	nation:			Section C	Section C Invoice Information:	Ë										54601	01	Pa	Page: of	
Comp	Company, Att of Teahouse at Re	Report To:	SP	SPAME	41)		Attention:	:u:											Prog	Program			
Addre	Humboldt	Copy To:					Compa	Company Name:	-									T UST F	Superfund	L	Emissions	☐ Clean	Clean Air Act
t	5						Address	ii	747.8		100	1000	To H						Voluntary Clean Up	☐ Dry Clean [☐	Jan [RCRA [Other
Email	Email To: Organization Conferme Ordania S. Com	urchase Order	. Se.				Pace Q	Pace Quote Reference	rence:									Location of	To the second		Re ug/	ing	
Phone:	Fax:	Project Name:	7	5	A	Ann Arbor	Pace P	roject Mar	Pace Project Manager/Sales Rep.	Rep.								Sampling by State	State	-	PPBV Other	V PPMV	
Redn	Requested Due Date/TAT: Pro	roject Number	,.				Pace Profile #:	rofile #:		4	5397	S	#	17				Report Level	<u> </u>	III. IV.	ō	Other	
	Section D Required Client Information MEI AIR SAMPLE ID Tell Sample IDS MUST BE UNIQUE E 6-13			300	(Client only)		COLL	COLLECTED		er Pressure Field - in Hg)	er Pressure Field - in Hg)		Summa	ma		Flow	8	Method:	(enem)	Trist VOCs Value BTEX	Trist (other) Trist BIEX Trist BIEX Trist BIEX	(soy)	
EW#	Hg O	High Volume Puff Other	HVP PM10	EDIY CC		COMPOSITE ST	ART	-	COMPOSITE - ENDIGRAB	Canist	Canist		MIN	per		Number	_	NATO SIXED	W) 0.	1048 81.0	1048 81.0		Ci de l'oced
LI 5	56-1			۳ j	1	413016	2000	43	B	0-30	6-13	0	a	8	50	6	3		-	4		0	
2	0.55			_		-	1033	2	1830	1-30	6		-	47	w	0	-					609	~
က	8150					_	693	٥	0944	_	6	5	0	0	3	19						5003	3
4	96-4		3				1040		MAT		-30-3		5	4	3	0						600	7
2	56-5						1103		1109		40		_	49	3	0	ω					500	5
9	90-0			>		>	1140	7	1149	198-1	0,0	3	-	8	3	_	٢		-			900	٥
7 8 6																							
11																							
12 Comr	12 Comments :		R	ELINO	HSIO	RELINQUISHED BY /	AFFILIATION	TION	DATE		TIME	AC	CEPT	ED B	Y / AF	ACCEPTED BY / AFFILIATION	NOI	DATE	TIME	Щ	SAMPI	SAMPLE CONDITIONS	TIQNS
			1	5	10	ando la	1	are.	4/39/22	120	1341	(lon	I	-1	1 1/2	1600	5/2/22		12:12	1	9 A	M
			<u> </u>	1	3			3				-		-	T)		}		1			N/A) _{1/4}
																ā						N/A	N/A
																						N/A	N/A
Page	WO#: 10606801	21				5 2 2 3	5.	SAMPI PRINT Na	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLEY SIGNATURE AI SAMPLER:	5 0	MODELLYN	ا الم	E !	#	200 TAG	V Signed	/ QQ / WW	Haloes DAYRA JOSTON			O° ni qmə	lce Custody Saled Cooler	mples Intact
23									7	adely	+	8	3					N N	1130				

achnical Phone: 612.607.6386

Pace Analytical®

incorrect preservative, out of temp, incorrect containers).

Document Name:

Sample Condition Upon Receipt (SCUR) - Air

Document No.: ENV-FRM-MIN4-0113 Rev.01 Document Revised: 13Oct2021

Page 1 of 1

Pace Analytical Services - Minneapolis

Upon Receipt Courler:	. 🔲 U	IPS PS	_		-	lient	Project		PM:	CT1	Du		
	0,000	5 . 40 mm/ 5. 61 mm - 1				1			CL1	ENT: C	ardno-MI		
					L] See E	xception	L					
(1) 사람이 얼마 하는데 아니라 아니라 아니는 그 없는 사람이 없는데 살아 없었다.		tr 🗀 Yes	KIN	10							,		
1876 THE REPORT OF THE PARTY OF THE PARTY.			la Dage	Mr.									
acking Material:	FedEk												
L	None	L III C	an		ther:					Exam	ning Contents:	- 3.0	70 0
								,			Comment	s:	
ain of Custody Presen					_								
***************************************	AND DESCRIPTION OF THE PERSON			7				-					
					-	-	T						
		107		-			∐ N/A						
				and the same of the same of						,			
													
THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	Requesteur							-					
	3 .			103	1011	-+							
		tainer for TO	-15	Ves Yes	ΠN	,		-		7			
APH)	-p-1		'	+ 133									
ace Containers Used?			1	Yes	□ No	,							
ntainers Intact?								10.					
	leaks when	nressurized	, [[Yes	☐ No	,		20.					
		pressurized						11 Ind	livid	ually Certifi	ied Cans? Y	I/N (Net wh	ich samnles
		concile samples	to I	_	Т	T			IVIG	daily certifi	·	N IBC WII	ich sampies
e COC?	available to re-	correite samples	1	Yes	☐ No			12.					
	urized?	***************************************			1,	1		13.				,	
		и 1946!!!)	1 5	es	☐ No								,
			10	AIR34	10/	AIR35	10A	IR17	Ш			8	
	Can	isters ·								Can	isters	4	
		the real formation of		1000						a	The state of the s	1753	F3 570
Sample Number	of the last of the	NAME AND POST OF THE PARTY OF T	CONTRACTOR OF THE PARTY OF	re Pr	THE PERSONNEL PROPERTY.	-	sample Nur	nber	-	Can ID	Controller	Pressure	Pressure
56-1			-3		+10								
11-2	3147	3063	-2.	5				2			70		
2					1				1				
11					-	-			+				
4									+			ļ	
11-5	3149	3228	-2	'	1		• •						
11-6	3135	3117	-2.	5	1				T	-			
	7	J	<u> </u>		4				+			 	
				-		-			+				
									1				
									T				
				_					+				
									-				
(4)													
									+				
	1								1_		L	L	
ENT NOTIFICATION/	RESOLUTION									Field Data	a Required?	Yes	☐ No
Person Contacted:						Dat	te/Time:						550050
	THE RESIDENCE OF THE PARTY OF T						-						
omments/Resolution:													
omments/Resolution:													
omments/Resolution:				-									